学年

教科

質問の種類

数学 高校生

2番の問題がわかりません。2枚目のやつが私が解いたやつです。-1/2より小さい範囲を求めているのにどうしてそれ以外の範囲も答えなのか教えて欲しいです

705 基本例 例題 145 002 のとき, (1) 2cos20+sin 指針 複数の種類 ① (1) ② (1) は このと ③ ②で の値 CHAR 234 基本 例題 144 三角方程式・不等式の解法 (1) 002 のとき,次の方程式、不等式を解け。 (1) √2sin(6+)=1 ・おき換え 2 cos(20- π 3 5-1 指針 解答 ()内でおき換えると (1) √2 sint=1 ずこれを解く。このとき, tの変域に要注意! 例えば,(2) 000 (2) 2cost≦-1 となるから、 020≦20 <2.2→ π つまり, 2cost≦-1 を-- -1≦t<4/1の範囲で解く。 ≤20-1 CHART 変数のおき換え 変域が変わることに注意 (1)+q=t ...... ① とおく。 0≦0<2であるから 50+<2x+) π 6 すなわち π 13 < π 6 6 この範囲で√2 sint=1 すなわち sint=1/2を解く 3 と t= π ...... 4' 4 ①から=t-π π 3 ② を代入してθ= (2)20=t とおく。 0≦0<2であるから >82 π -≤20- π π <4- 3 3 11 すなわち π (1) 方程 y 整理 1 解答 数) -1 0 7 π 12' 12 と 8 t ・π, よって 4 3 この範囲で2cost≦-1 すなわち cost≦- Asis, rsts or 3 12 17520-1*, *≤20-10, 10 われめるは を解く y 4 10 2 3 1 3 3 8 1 10 1 x 3 3 ゆえに20 5 π, 3л≤20≤⋅ 3 113 T よって101212/21/2 TO 5 ・π, 32 練習 0≦2のとき,次の方程式、不等式を解け。 ② 144 1) tan(+)=√3 (2) sin(-)-1 ゆえ よっ 0≤0 S (2) $14 (3)

未解決 回答数: 0
数学 高校生

⑵です。 tでおかないやり方でやったら、全然答えと合いません😭 どこが違うかおしえてほしいです! ちなみに、それと似たような問題を解いた時は、普通に答えと会いました!(写真3枚目)

260- せよ 161 三角方程式・不等式の解法 (4) 0のとき、次の方程式、不等式を解け。 √3 sin+cos0+1=0 ... 合成利用 0000 cos 20+ sin20+1 > 0 基本 160 指針 sin, cos が混在した式では,まず, 1種類の三角関数で表すのが基本。 特に、同じ周期の sin と cos の和では, 三角関数の合成が有効。 (1) sine coseの周期は2π (2) in 20, cos 20 の周期は であるから,合成して, sin (0+α) の方程式, sin (20+α)の不等式を解く。 なお,0+α など, 合成した後の角の変域に注意。 CHART sin と cos の和 同周期なら合成 160の変形→ DEBETUTAS 注意が必 YA (1)√3sin9+cos0=2sin(0) であるから,方程式は 解答 2 sin (0+)+1=0 ゆえに sin(0+/--/1/27 =t とおくと,00≦x のとき 6 6 7 この範囲で sint=- を解くと t= 6π よって, 解は π =π 6 (2) sin20+cos20=√/2sin(20+4) であるから,不等式は Vsin (20+4) +1>0 ゆえに sin (20) > 1/12 20+=t とおくと,0≦0≦πのとき とおくと,00≦のときts+ π 2 4 この範囲で sint> を解くと 0 YA 2 (1,1) √2 -10 5 7 st< π, -π<t: 4 すなわち20+ 5 > 4 一π, TC <20+ 9 YA y=sint 44 1 よって,解は 0≤0< 3 2016 2 4T 0 練習 002 のとき,次の方程式、不等式を解け。 ② 161 (1) sinat IT √2 4

解決済み 回答数: 1
数学 高校生

(2)の三角関数不等式の問題を教えていただきたいです。 黒線で引いている、なぜ常にこのようなものが必要なのでしょうか? すなわちのところで不等号がなぜ逆になっているか知りたいです。 よろしくお願いします。

基本 137 138 なるから、 ます。 π 3 基本 例題 140 三角方程式・不等式の解法 (2) ・ 002のとき,次の方程式、不等式を解け (1) 2cos20+sin0-1=0 sin20+cos20=1 00000 (2)2sin20+5cos0-4>0Qd 基本 137,138 重要 143 (1) cos20=1-sin20, (2) sin'0=1-cos' を代入。 指針▷ 複数の種類の三角関数を含む式は,まず1種類の三角関数で表す。 ② (1) は sin 0 だけ (2) は cos0 だけの式になる。 このとき,-1≦sin0≦1, -1≦cos01 に要注意! ③ ②で導いた式から (1) sin0 の値 (2): cose の値の範囲を求め、 それに対応する0の 値,0の値の範囲を求める。 sincos の変身自在に sin'0+cos'0=1 CHART 解答 (1) 方程式から 整理すると ゆえに よって 自 2 (1-sin20)+sin0-1=00 cos20=1-sin20 2sin20-sin0-1=0 (sin0-1)(2sin0+1)=0 200-(0203-1)=1+0800) yiel +1 1 sin0=1, 7 2 6 2 -1 1x 00 <2であるから 221 4章 23 三角関数の応用 π sin0=1より 0= また、 1 より sin0=-- 0= 2 したがって,解は 0= 276 2 1-2 -1 16 11 IC ・π, 6 16 11 π πT 7 11 π, π 6 (2) 不等式から 2 (1-cos20)+5cos 0-4 > 0 sin20=1-cos' 整理すると 2cos20-5cos0+2<0 よって (cos 0-2)(2 cos 0-1)<0 YA 1 0≦0<2πのとき,-1≦cos≦1であるから,常に COS 0-2 < 0 である。 5 3 ON したがって 2 cos0-1>0 すなわち COSA> 2 3 1 1 x 2 これを解いて 5 π 003 <02 (2) 2cos20+3sin0-3=0 (4) 2sin0tan0=-3 Op.226 EX88 練習 ③ 140 (1) 2cos20+cos0-1=0 0≦0 <2πのとき、次の方程式、不等式を解け。 (2) 2 301gin A-250

解決済み 回答数: 1