学年

教科

質問の種類

数学 高校生

(ア)の問題でなぜkとおけるのですか?

(1) AB=8, を AB, AC で表せ。 V (2) AOAB において, OA=d, OB=1とする。 (ア) ∠O を2等分するベクトルは, ることを示せ。 (+) (kは実数 と表され (イ) OA=2,OB=3, AB=4 のとき, ∠Oの二等分線と ∠Aの外角の二等分 線の交点をPとする。 このとき,OP を d, 方で表せ。 指針 (1) 三角形の内心は、3つの内角の二等分線の交点である。 次の「角の二等分線の定理」を利用し、 まずAD を AB, AC で表す。 右図で AD が △ABCの∠Aの二等分線 ⇒ BD:DC=AB: AC 次に, △ABD と ∠Bの二等分線 BI に注目。 B' 基本26 (2)Oの二等分線と辺 ABの交点をDとして,まずOD を a, b で表す。 [別解] ひし形の対角線が内角を2等分することを利用する解法も考えられる。 つ まり, OA'=1, OB'=1となる点 A', B' をそれぞれ半直線 OA, OB 上にとっ てひし形 OA'CB' を作ると, 点Cは ∠Oの二等分線上にあることに注目する。 (イ)(ア)の結果を利用して, 「OPをa, で2通りに表し, 係数比較」の方針で。 → ACOA となる点Cをとり、(ア)の 点Pは∠Aの外角の二等分線上にある 結果を使うとAPはa, で表される。 OP = OA+APに注目。 AO (1)△ABCの∠Aの二等分線と辺BCの交点をDとすると Cの二等分線と辺 BD:DC=AB:AC=8:5 ABの交点をEとし 答 5AB + 8AC { AE: EB=5:7, よって AD= 13 8 56 また, BD=7• = であるから 13 13 56 AI: ID=BA:BD=8: =13:7 70-TO-HA 13 ゆえに 13 AI-202AD=122.5AB+8AC-1AB+/AC 13 20 20 13 4. (2)(ア∠Oの二等分線と辺 AB の交点をDとすると AD:DB=0A:OB=||:|| 3 =2:3 このことを利用して 角の二等分線の定理 を2回用いると求め られる。 角の二等分線の定理 を利用する解法。 0=-8 15 EI: IC= : 5 10 B 7 D もよい。 ゆえにOD= |6|0A+|a|OB aba 方 = lal+161 + a+b a b 16 ab される。 求めるベクトルは,t を t≠0 である実数としてOD と表 t=kとおくと, 求めるベクトルは |a|+|6| + 6 (kは実数 k≠0) 161 A a a tOD= a+ba 0

未解決 回答数: 1
数学 高校生

答えを見てもよく理解できません( ; ; )教えてください🙇‍♂️

●●78 例題 5 正四角錐の側面に接する半球 右の図の正四角錐 A-BCDE におい て, AB=AC=AD=AE=3√3, BC=CD=DE=EB=6であり,内部に 半球がある。 この半球の底面は正方形 BCDE 上にあり, 球面は正四角錐の4 つの側面と接している。 このとき、 半球の半径を求めよ。 い D 解答 辺 BC, DE の中点をそれぞれM, N, 球の中心を0とする。 △ABM において AM=√√(3/3)2-3°=√18=3√2 考え方) 辺BC, DE の中点と点 を通る平面で切った断食 で考える。 3√√2 r r 6 △ABCの辺BC, CA, AF このとき, DEF の重心 中線AD と線分 E 明せよ。 とする。 CE=EA 中点連結定理から AF//ED また,BF = FA. 中点連結定理か AE//FD ① ② より 対 よってEP= 同様に,中線 それぞれ Q したがって, 交点となり, すなわち, BC = 6 より BM=CM=3 作る 3点A, M, Nを通る平面で切った断面で考える。 M 3 0 MN=CD=6より MO=NO=3 △AMO において AO=√(3/2)^2=√9=3 △AMN の面積を2通りに表すと TV=29 1/2(AM+AN)=1/2MNAO 中 が成り立つ。すなわち (3√/2+3√2)=-6.3 よって r= 3√2 2 (問題 5 正四角錐 A-BCDE の高さは12, 底面の正方形の1辺の長さは10であ る。この内部にある球が正四角錐のすべての面に接しているとき,球 A の半径を求めよ。 AH=12.ALL MH.MH=NH MN=CD=10 MH=NH=5 AM=AN=123+52=5169=13 1/12 (AM+MN+AN)=1/2MN.AH 1/2(13+10+13)=1/2x10.12 rs 3 M&HS N サ B 問題6 ABCの内心をIc それぞれP,Q,R とを証明せよ。

未解決 回答数: 1