学年

教科

質問の種類

数学 高校生

(3)までは解けたのですが、(4)に関しては合成関数の微分などを使いながら強引にやってみたのですが、おそらく間違っているので正しい解答を教えてほしいです。

0 私大対策数学 【同志社/立命館】 25 座標平面上に曲線C:y=ex (x>0) と曲線 D: y=1 + log x(x>0) がある。 (1) C上の点P(s,ers)におけるCの接線を l とする。 接線 l の方程式をsを用いて表せ。 (2)D上の点Q(1+10gt) における D の接線 は (1) の接線 l と垂直に交わるとする。 このとき,ts を用いて表せ。 (3)(1)の接線lの切片をu とし,u をs の関数と考える。このとき,s>0 においてぇは単調に減 示せ。さらに,sがs>0の範囲を動くとき,"の値域は>1であることを示せ。 少することを (4)(3)のsu(1) に対して,sを”の関数と考える。このとき, ds をsを用いて表せ。 さら に,sで表さ du れた (2) のに対して, du dt =1 となるuの値を求めよ。 ただし, suの関数とし て微分可能であることを証明な 1 しに用いてよい。 te (1) C: y = ex. (-) 1 xe 1 : 1 = -e(x-s) +e=ex+e(+) (2) D:y=1/ mの 傾きは↓で、条件より、 e² = = - 1 1 = ± e² (3) u = (1 + 1 ) = (1+1) + (-)--(1+())-(2+) SSDにおいて、U'<Oより、題意を満たす。 (4s+//+5) u (2)²² lim bmu=1 よって、SDのとき、">] (2+1) (+)/ (4)=(1/2)について両辺について微分すると =(1/2)(1+1/2)+(-1/23s') -s' (2+1/2)=1 1-$ JJ = dt du S S= S(2+1) 5.5·1-3) (S)(2+1 S (2 + 1/3) e' s 1] 1 S S s' (2+ √ √3)² 45+//+5 (2+3) es (25 (2+)²) - s² ² ² + (a + })() (2 + √ √ √) ² e ³ ³ ³ S S2 (2+3)= (2+3)²

解決済み 回答数: 1
数学 高校生

2024本試験-5 イウについてなのですが、確かに問題文の初めで比は与えられているのですが、それをそのまま使っても良いのですか? 別の線だから、比は同じでも元の長さは違うからとか考えなくてもいいのですか? 2枚目以降の写真は別の問題なのですが、この時、比をそのまま使っては... 続きを読む

第3問~第5問は、いずれか2問を選択し、解答しなさい。 28・15 200表示さ 第5問 (選択問題(配点 20 図1のように, 平面上に5点A, B, C. D, E があり, 線分AC, CE, EB, ED. DAによって、星形の図形ができるときを考える。 線分ACとBEの交際 P.ACとBD の交点をQ, BD と CEの交点をR, BE の交点をT とする。 CEの交点をDとCEの文 A11 E 10 ここでは B R × 図 1 TAT (1) AQD 直線 CE に着目すると 2024年度 本試験 数学Ⅰ・数学A 29 =SEとな AP 22/13 ANE E SET QR DS =1 Q RD SA CQ 3 AD と R が成り立つのでの水 (1) と表示され 同じものを選んでもよい QR: RD イ: 3 ** DA JE R となる。 また, △AQD と直線BE に着目すると #00 0801 =82 00 DAT QB: BD D エ : オリ ① 100 DA となる。 したがって編 BQ QR RD = エ : イ となることがわかる。 ア の解答群 AP:PQ:QC=2:3:3, AT : TS: SD = 1:1:3 AC ① AP ②AQ (3 CP を満たす星形の図形を考える。 以下の問題において比を解答する場合は, 最も簡単な整数の比で答えよ。 (数学Ⅰ・数学A第5問は次ページに続く。) 問3A学1年) 土 X DX .0 e ④PQ (数学Ⅰ・数学A 第5問は次ページに続く

解決済み 回答数: 1