学年

教科

質問の種類

数学 高校生

ゆえにからの2行、なぜこうなるか分かりません 教えて欲しいです

278 重要 例題 163 定積分で表された関数の最大・最小 (3) 00000 実数が1ste の範囲を動くとき, S(t)=Sole-tax の最大値と最小値を めよ。 ② 1 絶対値 場合に分ける 指針 場合分けの境目は ex-t = 0 の解で x=logt ここで, 条件1≦t≦e より 0≦log t≦1 であるから, 10gtは積 区間 0≦x≦1の内部にある。 よって、積分区間 0≦x≦1 を 0≦x≦logt と logt≦x≦1 に分割して定積分 Solex-t/dx を計算する。 YA e-t t-1 ●基本 147, 161 y=lex-t\/ logt ② ③ ex-t=0 とすると x=logt 解答 1≦te であるから mi2x7x12 0≤logt≤1 ゆえに 0≦x≦logtのとき ■logt は単調増加。 lex-tl=-(ex-t log≦x≦1のとき lex-tl=ex-t logt よって S(t)=S-(ex-t)}dx+S( (ex-t)dx= =-[ex-tx]+[ex-tx] Jlogt 0 =-2(elogt- logt-tlogt) +1+e-t Jlogt =-2t+2tlogt+1+e-t =2tlogt-3t+e+1 ゆえに S'(t) = 210gt+2t•• -3=2logt-1 t -A (A≤0) A (A≥0) 積分変数はxであるか ら, tは定数として扱う。 [F(x)]+[F(x) =-2F(c)+F(a)+F(b) elogt=t 微分法を利用して最大 値・最小値を求める。 S(t) [↑] S'(t) = 0 とすると logt= e-2 最大 1F 最小 e e 0 1 √e et e-2√e+1 よって t=e=√e 1≦t≦e における S(t) t 1 ... √e の増減表は右のように S'(t) - 0 + なる。 > 1 ここで e-2<1, S(t) e-2 極小 S√e)=2√e log√e−3√e+e+1 =e-2√e +1 したがって, S(t) は t=eのとき最大値 1, le = 2.718... log√e= t=√e のとき最小値 e-2√e +1 をとる。 (

解決済み 回答数: 1
数学 高校生

なぜ3分の4aで最大値とならないんですか?=がついてるから最大値はx=3分のaの時と3分の4の時じゃないんですか?教えてください

354 基本 例題 223 係数に文字を含む3次関数の最大・最小 a を正の定数とする。 3次関数f(x)=x2ax2+α'x 0≦x≦1 における最大 値M (α) を求めよ。 類立命館大] 基本219 重要 224 000 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で,極値と区間の y を 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると, y=f(x) のグラフは右図のよう になる(原点を通る)。ここで,x=1/3以外にf(x)=f(1) 満たすx (これをαとする) があることに注意が必要。 よって、1/3, a (10/<a)が区間0≦x≦1に含まれるかどうか 3' で場合分けを行う。 f'(x)=3x2-4ax+α²= (3x-a)(x-a) 解答 f'(x)=0とすると a x= a 3' a>0であるから, f(x) の増減表は次のようになる。 a ... a ... - 0 + a a 3 ax まずは、f'(x)=0を満た すxの値を調べ, 増減表 をかく。 <a>0 から 0<<a x 3 f'(x) + 0 f(x) 極大 極小>>(0) ここで,f(x)=x(x2-2ax+α2)=x(x-α)から x= 4 ()=(-a)-a, f(a)=0 1/3以外にf(x) = 27 を満たすxの値を求めると, 4 f(x)=から 27 4 x³-2ax²+ax-7a²=0 (*) 曲線 y=f(x) と直線 y= v=1は、x=1/3の 点において接するから、 f(x)-(x-1) で割り切れる。このこと を利用して因数分解する とよい。 XC ゆえに (x-1)(x-/1/20)-0 1 -2a a² =0 a 5 02 27 3 3 x=1であるから 4 x= a 5 4 1 a a² 0 うになる。 よって, f(x) 0≦x≦1における最大値M (α) は,次のよ 3 a 4 a² 3 9 [1] 1<- a すなわちα>3のとき [1] 1 - a 0 3 f(x)はx=1で最大となり a2-2a+1 M(α)=f(1) 0 13 -最大 a X 指針」 ****** ★ の方針。 [1] は区間に極値をとる xの値を含まず 区間の 右端で最大となる場合。

解決済み 回答数: 1
数学 高校生

(2)でピンクの丸で囲ってある数字はどうやって出すんでしょうか?y=0でxの3次式で解く以外ありますか?教えてください!

基本 例題 210 3次関数のグラフ 次の関数のグラフをかけ。 (1) y=-x+6x2-9x+2 (2) y=1/2x+ x+x2+x+3 基本 209 重要 215 指針 3次関数のグラフのかき方 ① 前ページと同様に, y = 0 となるxの値を求め, 増減表を作る(増減, 極値を調べ る)。 2 グラフと座標軸との共有点の座標をわかる範囲で調べ,増減表をもとにグラフを かく。 表にして x軸との共有点のx座標: y=0としたときの, 方程式の解。 軸との共有点のy座標 : x=0としたときの, yの値。 CHART グラフの概形 増減表をもとにしてかく (1) y'=-3x2+12x-9 答 =-3(x²-4x+3) =-3(x-1)(x-3) y=0 とすると x=1,3 yの増減表は次のようになる。 3C 1 3 0 + 0 |極小 |極大| y -2 7 2 Ay 2 よって, グラフは右上の図のようになる。 (2) y'=x2+2x+1 =(x+1)2 y'=0 とすると x=-1 yの増減表は次のようになる。 x -1 23 x y 3 83 y' + 0 + 8 y 3 -3 -10 X ゆえに、常に単調に増加する。 よって, グラフは右上の図のようになる。 (1) x軸との共有点のx座 標は,y=0 として x3-6x2+9x-2=0 .:. (x-2)(x-4x+1)= 0 これから x=2 y軸との共有点のy座標 は,x=0 として y=2 (2)x軸との共有点のx座 標は,y=0 として両辺 を3倍すると x3+3x2+3x+9=0 (x+3)(x2+3)=0 よって x=-3 軸との共有点のy座標 は, x=0 として y=3 晶検討 (2)で,x=1のときy=0 であるが, 極値はとらない。 なお,グラフ上のx座標が -1である点における接線 の傾きは0である。

解決済み 回答数: 1