学年

教科

質問の種類

数学 高校生

平面ベクトル なぜマーカー部のような計算をしていいのですか? ベクトル勝手に文字でおくシリーズありすぎて分かりにくいです 中学では求めたいものを文字でおくと習いましたが あんま関係なさそうなものを文字で2個以上置いたりしてて複雑怪奇です

題 C1.39 △OAB に対し, OP = sOA +tOB (s, tは実数) とする. を満たすとき、点Pの動く範囲を求めよ. (1) s+t=1,s20120 (3) stt≦l, s≧0, t≧0 (2) 3s+t=2 *** 「S,次 (4) 3s-2t=6, s≧0, t≧0 (1)s=1t としてsを消去した式で考える。 (2)条件式を '+f=1 の形に変形し、 (1) と同様に考える もに範囲がないことに注意する。 (3)s+t=k とおき,まずはんを固定して, k0 のとき,次の式を考える k k ここで、1+1=1であるから, (1) と同様に考える kk ■ (1) s+t=1,s≧0t≧0 より CBO 直交座標と比較して みよう。 s=1-t, 0≤t≤1 したがって OP=sOA + tOB To =(1-t)OA+tOB (0≦t≦1) よって、点P は, 線分AB上を動く. 3 (2)3s+1=2より.28+1=1 これより, OP=sOA+tOB 2/8/30A) +1(20B) ・① x+y=1, /A x≥0, y≥0 0.0 B' 10.12 ここで,s=- t= B 2 とすると ①より s+t=1 また、直線 OA, OB 上に 70 A 7A それぞれ 2 1 OA'=OA, OB'=20B YA 0 直交座標と比較して よう |3x+y=2 +23 となる点A', B' をとると OP= 'OA'+fOB's'+f=1) よって、点Pは、直線A'B'′ 上を動く . sfに制限がない ため線分ではなく直 線になる.

回答募集中 回答数: 0
数学 高校生

至急です 数ⅠAの問題です エからが分かりません 誰か教えてください

| 104 | 数学ⅠA実戦問題 実戦問題 5 ★★☆ 制限時間15分 (1)辺の長さが等しい正方形と正三角形を、1つの辺で貼り合わせてできた多角形の辺り はア ] である。 また、辺の長さが等しい正六角形と正三角形を,1つの辺で貼り合わせ してできた多角形の辺の数はイである。 (2) 太郎さんと花子さんは,面が合同な正多角形である2つの正多面体を, 1つの面で貼り 合わせてできる多面体について話している。 太郎: 例えば, 2つの正四面体を貼り合わせてできる多面体の面の数は、2つの正四 面体の面の数の和から貼り合わせた面の数を引けばよいからウだね。 花子:他の2つの正多面体の組み合わせでも同じことがいえるのかな。 太郎:右の図のように,正八面体 ABCDEF と正四 面体 ABCG を貼り合わせたとき,△ABGと △ABEは1つの平面上にあるように見える ね。 花子:確かめてみよう。 △ABC の定める平面と △ABG の定める平 方針に 面のなす角をα △ABCの定める平面と 太郎さんが △ABE の定める平面のなす角をβとしたと E B F G I が成り立てば △ABG と △ABEは1つの平面上にあるといえるね。 また、き オ [キク 太郎 : cosa= cos β= I であるから, が成り立つね。 数学Ⅰ・A 同様に,4点 A,D, C, G 4点B, F, C, G も1つの平面上にあるから, 正八面体と正四面体を貼り合わせたとき,面の数は だね。

回答募集中 回答数: 0
数学 高校生

問2のq’の式の分母に2かけてるのはどうしてですか

この日, もつことになる。 がαより引き継がれやすいと, 世代を重ねるごとに変動をしながら, Aの遺伝子頻 度が大きくなる傾向になると考えられる。 153 問1 BB の個体: 36% Bbの個体: 48% bbの個体: 16% 問2 0.29 問3 41個体 Key Point 自然選択が働くと、特定の遺伝子型の個体が取り除かれ,ハーディー・ワインベルグの法 則は成り立たない。 解説 問1 遺伝子Bの遺伝子頻度をか. 遺伝子の頻度をg (p+g=1) とすると,この集団に おける遺伝子型の頻度は次の式で求められる。な (pB+qb)²= p²BB+2pqBb+q²bb とは いる。 よって, 遺伝子型 BB の個体の割合は2=0.62=0.36, 遺伝子型 Bb の個体の割合は2pg=2×0.6×0.4=0.48, 遺伝子型 66 の個体の割合は4=0.4=0.16 となる。 問2bbの個体がすべて取り除かれた後の, 対立遺伝子の遺伝子頻度を′とすると. BBの個体の割合が 0.36, Bb の個体の割合が 0.48 であったので(sp+Mo 0.48 g′'= (0.36 +0.48) ×2 0.48 0.84×2 =0.285≒0.29 となる。 変化後の遺伝子頻度で自由交配が行われれば, ハーディー・ワインベルグの法則から次 世代における遺伝子頻度は変わらないので,bの遺伝子頻度は0.29である。 問3 対立遺伝子の遺伝子頻度が0.29 なので, bb が取り除かれた後の対立遺伝子Bの 遺伝子頻度かは、 al p'=1-0.29=0.71 st Bb の個体の割合は2pg′=2×0.71×0.29=0.4118 ≒ 0.41 総個体数が100個体であれば,B6の個体数は100×0.41=41)

回答募集中 回答数: 0