学年

教科

質問の種類

数学 高校生

基本例題29(1)(2)の解説お願いします🙇

51 基本 例題 29 不等式の証明 (絶対値と不等式) 00000 次の不等式を証明せよ。 (1)|a+bl≦|a|+161 (2) |a|-|6|≦la-61 p.42 基本事項 4. 基本 28 1章 CHART & THINKING 似た問題 結果を使う 4 ② 方法をまねる 絶対値を含むので,このままでは差をとって考えにくい。 AA を利用すると, 絶 対値の処理が容易になる。 よって, 平方の差を作ればよい。 (2)証明したい不等式の左辺は負の場合もあるから, 平方の差を作る方針は手間がかかり そうである(別解 参照)。 そこで, 不等式を変形すると |a|≦la-61+16 (1) と似た形になることに着目。 ①の方針で考えられそうだが, どのように文字をおき換えると (1) を利用できるだろうか? 解答 (1) (|a|+|6|-|a+6=(a+2|a||6|+16)-(a+b)2 A≧0 のとき |-|A|≦A=|A| 等式・不等式の証明 =α²+2|ab|+b2-(a²+2ab+62) =2(abl-ab)≧0 ...... (*) A <0 のとき -|A|=A<|A| la+b=(a+16)2 であるから,一般に la+6|≦|a|+|6| -|A|A|A| 更にこれから la+6/≧0,|a|+|6|≧0 であるから よって 別 -10≧≦|6| であるから -lak≦a≦lal, 辺々を加えて -(|a|+|6|)≦a+b≦|a|+|6| la+6|≧|a|+|6| |a|+|6|≧0 であるから (1)の不等式の文字αを a-b におき換えて |(a-6)+6|≦la-6|+|6| よって|a|≦la-6|+|6| ゆえに |a|-|6|≦la-61 別解 [1] |a|-|6|<0 すなわち |a|<b のとき (左辺) < 0, (右辺) > 0 であるから不等式は成り立つ。 [2] |a|-|6|20 すなわち |a|≧|b のとき la-b2-(al-16)²=(a-b)2- (a²-2|ab|+b²) =2(-ab+labl≧0 よって (al-ba-b12 |a|-|6|≧0,|a-b≧0 であるから |a|-|6|=|a-6| A-A≥0, |A|+A20 c≧0 のとき exclxlsc x≤-c, c≤x 1xc (3 ← 2 の方針 |α|-6|が負 の場合も考えられるの で、平方の差を作るには 場合分けが必要。 ini 等号成立条件 (1)は(*) から, lab=ab, すなわち, ab≧0 のとき。 よって, (2) は (4-6)620 ゆえに (a-b≧0 かつ≧0) または(a-b≦0 かつ b≦0) すなわち ab0 または abのとき。 RACTICE 29 不等式|a+b|≦|a|+|6| を利用して,次の不等式を証明せよ。 (1)|a-6≦|a|+|6| (3) la+b+cl≦la|+|0|+|cl (2)|a-cl≦|a-6|+16-c|

解決済み 回答数: 1
数学 高校生

数IIの問題です。 鉛筆のとおり0<a-1では?

解 7 オ て 重要 例題 51 2次方程式の整数解 xに関する2次方程式 x2(m-7)x+m=0 の解がともに正の整数である ときの値とそのときの解を求めよ。 く CHART & THINKING 方程式の整数解 [類 名城大] 数学A 基本 110, p.75 基本事項 (整数)×(整数)=(整数) の形にもち込む・・・・・・・ 1 2つの正の整数解をα, β とすると, 解と係数の関係から, α, β, mについて,どのような 関係式が得られるだろうか? → α+β=m-7, aβ=m が得られる。 この2式から (整数) X (整数)=(整数)の形にも ち込もう。すなわち,mを消去し,(αの1次式) (βの1次式)=(整数)とすればよい。 解答 'S T 係数が 2 3 ここ い FA 2次方程式 x2-(m-7)x+m=0 の2つの解をα,β (α≦) inf 方程式を変形すると とすると,解と係数の関係により 1 a+β=m-7,aßb=m m を消去すると a+β=aβ-7 よって aβ-a-β=7 m(x-1)=x2+7x xが正の整数ならば右辺が 正。ゆえに x=1である。 解答にあるとおり αβ=mであるからも ゆえに (α-1) (β-1)-1=7 正の整数である。 ① よって . もしD:al たものが目となるのでは? 0≦a-1≦β-1 よって、 ①から (a-1, B-1)=(1, 8), (2, 4) (α-1) (ß-1)=8... ①m= α, βは正の整数であり, α≦β であるから x2+7x x-1 8 =x+8+ x-1 すなわち m=aβ であるから 20 x-1 x>1の整 x-1=1, 2 (α,β) = (2,9) すなわちm=18 のとき x=2,9x=2,3, (α,β) = (3,5) すなわち m =15 のとき x=3,5 このとき (a, B)=(2, 9), (3, 5) 18-(1-2) から 8 (52-Tey)

解決済み 回答数: 3
数学 高校生

数II複素数の問題です。 下の鉛筆でかいてあるとおりD>0では?

つよう 基本 48 重要 例題 50 2次式の因数分解(2) 4x2+7xy-2y-5x+8y+h がx,yの1次式の積に因数分解できるように, 定数kの値を定めよ。 また、 そのときの因数分解の結果を求めよ。 [類 創価大 ] CHART & THINKING 2次式の因数分解 = 0 とおいた2次方程式の解を利用 基本 20,46 「xyの1次式の積に因数分解できる」 とは, (与式)=(ax+by+c) (dx+ey+f) の形に表 されるということである。 また, 与式をxの2次式とみたとき(yを定数とみる), (与式) = 0 とおいた2次方程式 4x2+(7y-5)x-2y2-8y-k)=0の判別式をDとする と与式は x=(zy-s)+√x-(Py-5) の形に因数分解できる。この因 8 8 数x、yの1次式となるのは、Dが(yの1次式) すなわち」についての完全平方式のと きである。 それは, D1=0 とおいて、どのような条件が成り立つときだろうか? 答 ( (与式)=0とおいた方程式をxの2次方程式とみて 4x2+(7y-5)x-(2y2-8y-k)=0 ① の判別式をDとするとである。 83 int 恒等式の考えにより 解く方法もある。 (解答編 P-80=8+ および p.59 EXERCISES 15 参照) D=(7y-5)2+4・4(2y2-8y-k)=81y2-198y+25-16k 与式がxとyの1次式の積に分解されるための条件は,①の 解がyの1次式となること, すなわち D がyの完全平方式 となることである。 D1 = 0 とおいた」の2次方程式 81y2-198y+25-16k=0 の判別式をDとすると D2-(-99)2-81(25-16k)=81{112-(25-16k)} 44 04-81(96+16k) 2-1 0 D2 = 0 となればよいから 96+16k=0よって=-6 このとき, D=81y-198y+121=(9y-11)2 であるから, ①の解は x= __(7y-5)±√(9y-11)-(7y-5)±(9y-11) 8 8 5 ◆ D1 が完全平方式⇔ 2次方程式 D=0が重 解をもつ 計算を工夫すると 992=(9.11)=81・112 よって 音√(9y-11)=|9y-11| であるが, ±がついて いるから, 9y-11 の 対値ははずしてよい。 すなわち x=y-3-2y+2 4 中 (与式)=4x =(x-3)(x-2y+2)}(S) 括弧の前のを忘れ いように。 =(4x-y+3)(x+2y-2)

解決済み 回答数: 1
数学 高校生

(1)(2)ともにまったく分からないので教えてください!

[大] 大] 重要 例題 9 二項定理の利用 (1) 101 ' の下位5桁を求めよ。 (2)2 00で割った余りを求めよ。 CHART & THINKING のののの 23 基本 (1),(2) ともに, まともに計算するのは大変。 (1) は,次のように変形して、 二項定理を利用する。 1011= (100+1)100= (1+102) 100 展開した後, 各項に含まれる 10 に着目し, 下位5桁に関係する箇所のみを考える。 (2)も二項定理を利用するが,どのようにすればよいだろうか? →900=302 であることに着目し,2930-1 と変形して考えよう。 解答 (1) 1011=(100+1)100= (1+102) 100 =1+100C1・102+100C2・10+100C3・10°+100C4・10°++10200 =1+100C1・102+100C2・10+10%(100Cs+100C4 ・ 102 +... +10194) ここで, a=100C3 +100C4・102 +…+10194 とおくとaは自然数で 101100 = 1+10000 + 49500000 +10°α =10001+49500000 +10°a =10001+105(495+10a) 10 (495+10a) の下位5桁はすべて 0 である。 よって, 101100 の下位 5桁は 10001 (2) 2945(30-1)45=(-1+30)45 =(-1)^5+45Ci (−1)44・30+45C2(-1)43・302+45C3(-1)42・303 ■■ 1章 1 3次式の展開と因数分解,二項定理 分散式は、 +…+45C44(-1)・304+3045 第3項以降の項はすべて 302=900で割り切れる。 また,(-1)45=-1, -1) =1であるから -1+45・1・30=1349=900・1 +449 よって, 2945 を900で割った余りは 449 大←第1項と第2項の和は 900 より大きい。 計算への応用 INFORMATION 上と同じ考え方で, 複雑な計算を暗算で行うことができる。 例えば,9992 は 9992=(1000-1)=1000000-2000+1=998001, 4989×5011 は 4989×5011=(5000-11)×(5000+11)=50002-11=25000000121=24999879 と計算 できる。

回答募集中 回答数: 0
数学 高校生

組み合わせの問題です! 階乗でやる方法なかったですか? 解説お願いします

304 基本 例題 30 整数解の組の個数(重複組合せの利用) 00000 (1) x+y+z=7 を満たす負でない整数解の組 (x, y, z) は何個あるか。 (2) x+y+z=10 を満たす正の整数解の組 (x, y, z)は何個あるか CHART & THINKING 整数解の組の個数 ○と仕切りの活用 p.294 基本事項 基本-20 (1) 直接数え上げるのは大変である。 問題を読みかえて, x, y, zの異なる3個の文字から 重複を許して7個の文字を取り出すと考えよう。 すなわち 7個の○と2個の仕切りの 順列を考え、仕切りで分けられた3つの部分の○の個数を,左から順に x, y, zとする。 例えば 〇〇〇一〇〇一〇〇には (x, y, z)=(3, 2, 2) 一〇〇〇〇〇〇〇には (x, y, z)=(0, 2, 5) がそれぞれ対応する。 (2)x,y,zが正の整数であることに注意。 (1) の考え方では0となる場合も含むから x-1=X, y-1=Y, z-1=Z とおき, 0であってもよい X≧0, 0, Z≧0 の整数解の場合((1) と同じ)に帰着させ る。これは, 10 個の○のうち, まず1個ずつを x, y, zに割り振ってから, 残った7個の ○と2個の仕切りを並べることと同じである。 また,別解のように,10個の○と2個の仕切りを使う方法でも考えてみよう。 解答 (1) 求める整数解の組の個数は, 7個の○と2個のを1列 に並べる順列の総数と同じであるから ( 別解求める整数解の組の 個数は,3種類の文字 zから重複を許して7個 る組合せの総数に等しい ら3H7=3+7-1C7=9C7 =9C2=36 (1) X = 0, Y ≧ 0,Z≧0 C=C2=36(個) 合韻高 (2)x-1=X, y-1=Y, z-1=Z とおくと このとき,x+y+z=10 から (X+1)+(Y+1)+(Z+1)=10x=x+1, y=Y+l, 重要 例題 3 次の条件を満 (1) 0<a<b CHART & 大小関係が条 (1)条件を満た ら4個の数字 (2) (1) とは違 (2,2,2,2 それらの数 重複組合せ 別解として A=a, B= (a, b, c, (A, B, C. するから, 解答 (1)1,2, 小さい順 まる。 よって、 (2) 0, 1, 2 い順に よって、 よって A= 条件 0 7! よって X+Y+Z=7, X≧0, Y≧0,Z≧0 ...... A z=Z+1 を代入。 別解 求める正の整数解の組の個数は, A を満たす0以上の整数 解 X, Y, Zの組の個数に等しいから, (1) の結果より 36個 OC (別解 10個の○を並べる。 である。 よって、

解決済み 回答数: 1