学年

教科

質問の種類

数学 高校生

印をつけたところの意味がよくわかりません!教えてください

516 第8章 図形の性質 例題252 回転体の体積 1辺の長さが24の正四面体 A-BCD を, 辺ABを軸 として1回転させるとき, △ACD が通過する部分の体 積を求めよ. 考え方 △ACD がABを軸として回転するとどうなるかのイメージ がつかみにくい場合は, ACD を部分的に見てみる.たとえ ば,辺 AC が ABを軸として回転するとどうなるだろうか. さらに、 辺CDの中点をNとしたとき, AN が ABを軸とし て回転するとどうなるか. このように,具体的に考えてみる。 B A C A AB⊥CM AB⊥ DM 議酸よって, AB⊥平面 MCD となり, ABCD 8 N 解答 ABの中点をMとすると, △ABCと△ABD は正三角 形より, B APOKAE したがって, CD 上の任意の点PとAとを結んだ線分 AP を,ABを軸として1回転させると, Aを頂点とする円錐 の側面になる. また, △ABC,△ABD は合同な正三角形より, AMCD はMC=MD の二等辺三角形であるから, CDの中点をN とすると,点Mと辺CD 上の点を結ぶ線分で最も長いもの は MD (MC) , 最も短いものはMN である. 取り SA RAKES 0040UNON 19TE **** B 正四面体であることを考えると,辺AD がAB を軸にして回転すると辺 AC の場合と AB & CC 同じになる このように考えると, △ACD の動く範囲が見えてくる. ここで,上の図のように, CからABに垂線を引いたときの AB との交点とNから ABに垂線を引いたときの交点は一致することを利用する. A N A D * TOBA DA D N AT&SHOWI 平面 MCD は回転軸 垂直な平面である. 点PがCDの中点 になるとき, 考え方 のNの場合になる. ras

回答募集中 回答数: 0
数学 高校生

(1)の回答で、OC2が何故正方形の対象軸になるかわからないです。教えて下さい

110 第3章 図形 2の正三角形OAB と3つの二等辺三角形 COA, C2AB, Cabo 1辺6の正方形 PQRS の折り紙がある。 下図のように、 以下の問いに答えよ.ただし, AB は PQ と平行とする。 をかいて切り取り, 三角錐を組み立てることにする.このとき、 63 立体と展開図 (1) 辺ABの中点をM, 直線ABと辺 QR の交点をDとするとき、 6 MD, BD の長さを求めよ。 S (2) CD, BC の長さを求めよ.. (3) 三角錐において, Cから △OABに下ろした垂線の足 をHとするとき, CHの長さ を求めよ. (4) 三角錐 C-OAB の体積V を求めよ. 精講 P A27B D C2 空間図形を考えるときの基本は, できるだけ平面図形としてとらえること R Satin C3 A STSMARTCO だから、立体と展開図の2つをにらみながら解答をつくっていきます (1),(2) まず,必要な部分だけをぬき出した図をかくことが大切です。 次に,直角がたくさんあるので,直角三角形をみつけて, 三平方の定理 三角比の利用を考えます (61). (3) 四面体 C-OAB の条件から, C から底面に下ろした垂線の足Hは△OAB の外心です (62) , △OABは正三角形なので, Hは重心でもあります。 ま た, 垂線を下ろしているので, (1), (2)と同様に直角三角形に着目します。 解答 (1) OC2 は正方形の対称軸で,Mは線分 OC2 上にあるので, MD=123×6=3 MB = 1 だから, BD=3-1=2 (2)△OACと△BAC において C A M あ BA国道 B B

回答募集中 回答数: 0
数学 高校生

要素の個数を正確に求めれません😭 求める過程を教えてください!

00000 重要 例題 10 グループの人数と集合 (3つの集合) 人は人のうち、漁市に行ったことのある人は5人であり市に行けたことのあ 人は13人市に行ったことのある人は30人であった人は市と日市に行 たことのある人はx人, A市と C 市に行ったことのある人は9人, B市とC のある人は3人, A市にもB市にもC市にも行ったことのない人は28人であ 市に行ったことのある人は10人であった。市との市に行った。 基本 3. p.275 STEP UP) った。このとき、xの値を求めよ。 CHART & SOLUTION 集合の応用問題 図をかいて 1 順に求める ② 方程式を作る ②の方針で解く。図において分割される各部分集合の要素の個数をかき込んでいく。 そして、 残った部分の要素の個数をα, bとおいて考える。 全体集合をひとし, A市, B市, C 市に行ったことのある人全体の集合 を,それぞれA, B, C とする。 右の図のように, 要素の個数 α, bを 定めると50 a+(x-3)+3+6=50 b+(x-3)+3+7=13 これらの式を整理すると a+x=44 a+b+x=45 1, 3 ・U (100) a+b+14+(x-3) +7 +6 +3 +28=100 b+x=6 28 b B(13) x-3 ( NUAR BUA DURUM) -A (50) a 3 7 2, ①から a=44-x ②から b=6-x これらを③に代入して整理すると-x+50=45 よって x=5 6 14 C(30) n(ANBNC) #5 個数をかき込んでいく。 n(A)=50 ←n (B) =13 n(U)=100 Smanj な 0. C PRACTICE 10 3 ある高校の生徒140人を対象に, 国語、数学、英語の3教科のそれぞれについて、得 意か否かを調査した。 その結果, 国語が得意な人は86人、数学が得意な人は40人 た。そして,国語と数学がともに得意な人は18人, 国語と英語がともに得意な人は 15 人,国語または英語が得意な人は 101 人, 数学または英語が得意な人は5人い また,どの教科についても得意でない人は20人いた。このとき、3教科のすべてが 意な人は 人であり、3教科中1教科のみ得意な人は人である。[名城

回答募集中 回答数: 0
数学 高校生

72.1 原点Oについての文章は必要ですか? また必要ならなぜ必要なのでしょうか?

[0] 基本例題 12 座標を利用した証明 (1) 食 (1) △ABCの重心をGとする。 このとき, 等式 ABCT)ALLED AB'+BC2 + CA'=3(GA²+GB2 + GC2) が成り立つことを証明せよ。 9 $ (2) △ABCにおいて, 辺BC を 1:2に内分する点をDとする。 このとき, 等式 2AB'+AC2=3AD' +6BD' が成り立つことを証明せよ。 TOLOUR MAT 指針 座標を利用すると, 図形の性質が簡単に証明できる場合がある。 そのとき 0 31 けで AB この座標軸をどこにとるか、 与えられた図形を座標を用いてどう表すか がポイントになる。そこで後の計算がらくになるようにするため,問題の点がなるべく 多く座標軸上にくるように 0が多いようにとる。 (1) は A(3a, 36), B(-c, 0), C(c, 0) とすると, 重心の性質からG(a,b) (2) l A(a, b), B(-c, 0), C(2c, 0) CHART 座標の工夫 1 0 を多く ② 対称に点をとる Let 解答 (1) 直線BC をx軸に, 辺BCの垂直二等分線をy軸にとると,| 線分BCの中点は原点0になる。 A (3a, 36),B(-c, 0), C(c, 0) とすると, Gは重心であるからG(α, b) と表される。 よって AB2+BC2 + CA 2 (1) +8+-- =(-c-3a)² +962+4c²+(3a-c)2 +962 ① の場=6a²+662+2c2 ...... 0212 =3(6a²+6b²+2c²) HOMEB 平行四辺 GA2+ GB2+GC 2 (1=(3a-a)²+(36−b)²+(-c-a)²+b²+(c-a)² + b² ② ① ② から AB2+BC2+CA²=3(GA+GB2+GC2) (②2) 直線BCをx軸に点D を通り直線BC に垂直な直線を y軸にとると,点Dは原点になり, A (a,b), B(-c, 0),( (20) と表すことができる。 24+ (x + (11) M よって 2AB'+AC'=2{(-c-a)+(-6)^}+(2c-a)+(-6) 2 =2(c²+2ca+a²+b²)+4c²−4ca+a²+6² 2)2 2007 =3a²+3b²+6c² 3AD²+6BD²=3(a²+b²)+6c² ①②から 基本 71 ② B (-C,0) 2AB²+AC²=3AD²+6BD² +3,0 0-8 A 基本 85 EA(3a, 36) 0 (G (a,b) (c, 0) x y A(a, b) (E) 4 B12- (-c, 0) OD a(s) 2−)Ɔ (^_{}ª_{{I_DA Mɛ (1) 3DSMATRROS:8,9% 音の点をPとする。このとき,等式 117 (2c, 0) x ET 3章 12 直線上の点、平面上の点

回答募集中 回答数: 0
数学 高校生

114.3 1からpのk乗までの自然数のうち、 pの倍数の個数がpのk乗÷pで求まるのはなぜですか??

482 A 00000 互いに素である自然数の個数 例題 ( 114) [類名古屋大 nを自然数とするとき, m≦n で, mとnが互いに素であるような自然数mの 重要 個数をf(n) とする。 また, p, g は素数とする。 (1) f (15) の値を求めよ。 (3) 自然数に対し, f(p) を求めよ。 指針 (1) 15 と互いに素である 15 以下の自然数の個数を求めればよい。 15=3・5であるから 15 と互いに素である自然数は, 3の倍数でも5の倍数でもない自然数である。 しかし、 「でない」 の個数を求めるのは一般に面倒なので, 全体 (である)の方針で考える。 (2) は異なる素数であるから, bg と互いに素である自然数は, pの倍数でもgの倍 TRAND 数でもない自然数である。 (1) と同様, 全体 (である)の方針で考える。 (3) と互いに素である自然数は,かの倍数でない自然数である。 解答 (1) 15=3.5 であるから, f(15) は1から15までの自然数のう ち, 1-3, 2-3, 3.3, 4.3, 1.5, 2.5, 3.5 を除いたものの個数であるから f(15)=15-7=8 (2) p, g は異なる素数であるから, pg と互いに素である自然 数は,pの倍数でもgの倍数でもない自然数である。 ゆえに, f(pg) は, 1 から by までのby 個の自然数のうち D p,2p,......, (q-1) p, paig, 2g, , (p-1)q, pq を除いたものの個数である。 よって f(pg) = pg-(p+α-1) = pg-p-g+1 (2) gf (pg) を求めよ。 FRO =(p-1) (q-1) (3) 1からp までの個の自然数のう の倍数はppp1(個)ある から、f(p) はかの倍数でないものの個数を求めて f(p)=p²-pk-1 ISMAI ①pは素数, kは自然数のとき ② p q は異なる素数のとき ②' p q は互いに素のとき pの倍数 (9個) 練習 (3) ③ 114 (1) f(77) の値を求めよ。 gの倍数 (個) 1~pq pg(1個) bigと 互いに素 基本112,113) 15 程度であれば,左の解答 でも対応できるが,数が大 きい場合には,第1章の基 本例題1で学習した, 集合 の要素の個数を求める要領 で考える。 検討 オイラー関数(n) CADRE n は自然数とする。1からnまでの自然数で, n と互いに素であるものの個数をΦ(n) と表す。 このΦ(n) をオイラー関数といい, 次の性質があることが知られている。 $(p)=p-1, (p²)=p²-pk-1 (pa)=(p)o(q) 上の重要例題 114 の f (n) について,次の問いに答えよ。 <pg が重複していることに 注意。 はギリシア文字で「ファイ」と読む。 [(1) で確認] p=3,g=5 とするとf(15)=f(3.5) =(3-1)(5-1)=2.4=8 (pa)=(p)o(q)=(p-1)(q-1) (1-1/2)としてもよい。 (2) f (pg) = 24 となる2つの素数p, g (p<g) の組をすべて求めよ。 (3) f(3) = 54 となる自然数kを求めよ。 [類 早稲田大〕 1 STT p.484 EX80 基本 2 (2) CHA 解 (I) 20 素因 1か 1

未解決 回答数: 0
数学 高校生

なぜ二つの室の圧力が同じなのでしょうか! よろしくお願いします。

9月21日 8限目 演習問題 |1 2015 九大 図のように、 断熱材でできた密閉さ れた容器が隔壁により第1室と第2室 に仕切られている。 隔壁は各室の気密 性を保ちながら容器内を摩擦なくなめ らかに動く。 また, 隔壁を固定するこ とも可能である。 隔壁の中央部は熱を 通す素材で、それ以外の部分は断熱材 でできている。さらに, 中央部は開閉 可能な断熱カバーでおおわれており, このカバーの開閉により両室間の熱の移動を制御できる。すなわち, 断熱カバーが閉じてい いれば、両室の間に熱の移動は無く, 断熱カバーが開いていれば,両室の間でゆるやかなB. 熱の移動が可能である。 隔壁中央部の熱容量はないものとする。 第1室内にはヒーターが 設置されており, 第1室の気体を加熱することができる。 容器 第1室 ヒーター 隔壁 断熱カバー 第2室 隔壁中央部 IPA (l). 3 第1室と第2室に,気体定数をRとして定積モル比熱が 22 R である同種の単原子分子 理想気体を封入し, 次に述べるような状態変化を行った。 なお, 問題中の温度はすべて絶 対温度で与えられている。 初めの状態 A では, 隔壁は静止しており, 断熱カバーは閉じている。 このとき, 第1 室の気体の体積, 温度,圧力はそれぞれVA, TA, PA であり, 第2室の気体の体積, 溫 度,圧力はそれぞれ 3VA, TA, PAであった。 (1) 第1室の気体の物質量(モルを単位として表した物質の量) , VA, T'A' PA, R の 中から必要なものを用いて表せ。 状態 A から, 隔壁を固定し断熱カバーを閉じたままヒーターによりゆっくり第1室の 気体を加熱したところ, 第1室の気体の温度が2TA となった。 この状態を状態 B とする。 (2) 状態 A から状態 B への変化の間にヒーターが第1室の気体に加えた熱量を, VA, TA,PA, R の中から必要なものを用いて表せ。 次に, 状態 B から隔壁を固定したまま断熱カバーを開け, しばらく待ったところ, 熱 平衡に達した。 この状態を状態Cとする。 (3) 状態Cにおける第1室, 第2室の気体の温度を, VA, TA, PARの中から必要な ものを用いて表せ。 (4) 状態 B から状態 C への変化の間に第1室から第2室に移動した熱量を, VA, TA, PA, R の中から必要なものを用いて表せ。 (5) 状態Cにおける第1室の気体の圧力, 第2室の気体の圧力を、 それぞれVA, TA, PA, R の中から必要なものを用いて表せ。 再び状態 A から考える。 以後, 隔壁は自由に動けるとし, 断熱カバーは閉じている。 ヒーターによりゆっくり第1室の気体を加熱し、 総量 3PAVA の熱を加えた状態を状態 Dとする。 (6) 状態 A から状態 D への変化の間に生じた第1室, 第2室の気体の内部エネルギーの 変化をそれぞれ 4U 1, 4U2 とする。 AU1+4U2 を, VA, PA を用いて表せ。 (7) 状態 D における第1室の気体の体積をVD とし, 状態 D における第1室, 第2室の 気体の圧力をpp とする。 4U を, VA, PA, VD, PD を用いて表せ。 (8) PD を, VA, TA, PA, Rの中から必要なものを用いて表せ。 なぜ? ださい

未解決 回答数: 1
数学 高校生

FocusGoldSmart数2の問題です。 大問23の解き方がわかりません。 別解の方の解き方が乗っていない為わからないので誰か教えていただけませんか❔ 明日までに教えていただけると助かります❕

る. をそ して Focus a+b+c=1.abe=be+ca+ab とも1つは1に等しくなることを証明せよ。 考え方] 「 のうち少なくとも1つは1に等しい」とは、 a=1 または b=1 または e=1」 のことである。 実数α, βについて αβ=0 のとき、 α=0 または 8=0 であることを利用する。 a,b,cのうち、少なくとも1つは1に等しくなるとは, a=1 または b=1 または e=1 のことである. のとき, 実数a,b,cのうち少なく したがって (a-1)(b-1)(c-1)=0 ......① であることを示せばよい. ①の左辺を変形すると. (a-1)(b-1)(c-1) =(ab-a-b+1)(c-1) =abc-ab-ac+a-bc+b+c - 1 =abe-(bc+ca+ab)+(a+b+c)-1 =abc-abc+1-1=0 条件を利用して ① が成 り立つことを示す。 したがって, a+b+c=1.abc=bc+ca+ab のとき abc=bc+catah 等式 ① は成り立つから. ①より |a+b+c=1 α-1=0 または 6-1=0 またはc-1=0 よって, a=1 または b=1 またはc=1 となり. a b c のうち少なくとも1つは1に等しくなる. (別解) 実数 a b c が与えられた条件を満たすとき 実数 a b c を解とする3次方程式は. abc=bc+ca+ ab=k (k は実数) とおくと. x-x+kx-k=0 と表せる. これを変形すると, x(x-1)+k(x-1)=0 (x-1)(x²+k) = 0 よって, x=1 を解にもつので、 a.b.cのうち 少なくとも1つは1に等しくなる. 実数α. β.yについて aβy=0 ⇔α = 0 または 80 または y=0 3次方程式 ax2+bx+cx+d=0 の3つの解をα. B. yと すると. a+β+y=- b a a+by+ya=/c aβy=- d a (p.120 解説参照) 「少なくとも1つは☆に等しい」 は 「積) =0」 を示せ 注〉 (a-b)(b-c) (c-α)=0 となるとき, a b または b c またはca」 であるか ら、「a b c のうち少なくとも2つは等しくなる」 となる。

回答募集中 回答数: 0
数学 高校生

教えてください🙇‍♀️

(1) (2) 1 - (イ) [∞] [s] ∞] [4] [∞] (1) [2] 太郎さんと花子さんは次の 【問題1】 について考えている。 【問題1】 O n] [s] [* SMAS 2次関数f(x)=x-2x+c (cは定数) がある。 x≧0 を満たすすべてのxに対し、 不等式f(x) ≧0 が成り立つようなどの値の範囲を求めよ。 この【問題1】 に対して, 花子さんは以下のように解答したが, 【花子さんの解答】を 読んだ太郎さんは、この解答が間違いであることを指摘している。 【花子さんの解答】 f(0) = c であるから、求めるcの値の範囲はc≧0 太郎:y=f(x)のグラフを考えたかな。 まずはグラフの軸を確認しよう。 花子: 軸は直線 x = で,グラフは下に凸の放物線だね。 太郎:そうだね。それでは、花子さんの求めた 「f(0)≧0」 すなわち 「c≧0」 が成り 立つときに,x≧0 を満たすすべてのxに対しf(x) ≧0」が成り立つのかな。 次の3つの y=f(x)のグラフはすべて「f(0)≧0」を満たしているけれど, は x≧0 を満たすすべてのxに対し, f(x) ≧0」が成り立っていないね。 花子:本当だ。「f(0)≧0」 が成り立てばよいと考えていたことが間違っていたね。 にあてはまる数を答えよ。 V O x≧0 を満たすすべてのxに対し, f(x) ≧0 が成り立つ条件は f(0) ≥ 0 にあてはまるグラフを、次の1~3のうちから一つ選び、番号で答えよ。 2 3 0 (3) 太郎さんと花子さんの会話を参考にして,次の 【問題2】を解け。 【問題2】 V 2次関数g(x)=x-2x+α²-3a+1 (aは定数)がある。x≧0 を満たすすべてのxに 対し、不等式 g(x) ≧0 が成り立つようなaの値の範囲を求めよ。 3 (配点10) 2つ とする。 (1) y= O (2) 2 (3) ev

未解決 回答数: 1