学年

教科

質問の種類

数学 高校生

数学2B / 数列 イ の求め方がよくわかりません。 教えて頂きたいです🙇‍♀️

25 2 1.² 40x tod 2 5 5025 36x3 70 数学ⅡI・数学B 第3問~第5問は、いずれか2問を選択し、 解答しなさい。 第4問 180 50 (1) 太郎さんは次の操作を考えた。 ESP 操作 1 12 2種類のラーメンのスープが容器 A, B に分けて入っている。 [はじめの状態] 240×100 容器 A : 塩分濃度 1.6%のスープ 240 容器B: 塩分濃度 1.2% のスープ 360g) 太郎さんと花子さんは容器 A,Bのスープを使って, スープの塩分濃度を調整 しようとしている。 80.0 20.0 5025 96. -792 +200×100colrav 50% 容器 A から40gのスープを取り出して捨て、 次に, 容器 B から40gのスー プを取り出して容器Aに入れる。 このとき, 容器Aのスープの塩分濃度が 209.0 80$.028060 均一になるようによくかき混ぜる。 47³-32²2²-x) 98²-3x-7 (選択問題)(配点20) 1985.0 bet8.0 1018.0 ASTS.GO2.0 [はじめの状態] の容器 Aのスープ 240gに含まれている食塩の量は ア ANT CERD 2866 0DIO SUB.0 81.0 1061.0 $8310 A 8 19 96 O (2) イ イ であり、操作1を1回だけ行った後の容器Aのスープの塩分濃度は である。 なお, 操作1を1回行うたびに容器Bから40gのスープを取り出すので 回までである。 操作を行うことができる回数は 17 2 01 07 の解答群 200x1.6 1696 A 50810105005025 25 OCTLO 1840.0 の解答群 の解答群 200x 6 TEL5 ①8 1.6 100 1001.3 3 5 ELO SETAO AO CITI 2 1.2 +本日× 100-5 4 3 ②9 - 42 - 23. 15 12 24001.6 5700 = 3.6+2²2/10=3.68g 24 50 (3) 10 96 25 [1 ア 7 40 11 12 1.6 02 12 19.2 % 96 193 25 (数学ⅡⅠ・数学B 第4問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

75.1 記述これでも大丈夫ですか??

416 LE 00000 基本例題 75 三角形の面積比 (1) △ABCの辺AB, AC 上に, それぞれ頂点と異なる点D, Eをとるとき A+AR AE が成り立つことを証明せよ。 AD.. AADE △ABC AB AC (2) △ABCの辺BC, CA, AB を3:2に内分する点をそれぞれD,E,F とす る。 △ABCと△DEF の面積の比を求めよ。 指針▷三角形の面積比は, p.410で考えたように等しいもの(高さか底辺)に注目する。 (1) まず, 補助線 CD を引く。 △ADEと△ADC では何が等しいか。 ! 1① 三角形の面積比 等高なら底辺の比等底なら高さの比....... (2)(1) を利用。 △DEF は, △ABCから3つの三角形を除いたものと考える。 11点で交わ 解答 (1)2点CDを結ぶ。 △ADEと△ADCは, 底辺をそれぞれ線分 AE, 線分 AC と △ADE AE みると,高さが等しいから ① AADC AC △ADCと△ABC は, 底辺をそれぞれ線分 AD, 線分 AB と AADC AD Ma みると, 高さが等しいから (2) △ABC AB ① ② の辺々を掛けると TRICA FORMAADE AADC AE AD したがって 練習 2 75 RAADE (2) (1)により ゆえに AADC BAS- △ABC AAFE AF AE AD AE AB AC △ABC AB AC ABDF BD BF ACED 三角形の1つの△ABC CA CB ここで 両辺を △ABC で割ると △DEF △ABC △ABC BC BA =1- =1- PGAIS-MA AABC AC AB(+0A)= MA3130 CE CD tra 353-53-5 2|52|52|5 32 △ABC △DEF=25:7 5 5 6 25 6 25 (a+A)s]s=+HA 18+CA= HS+CAA 80MAS-04 B 6 25 6 6 6 7 25 25 25 25 A ADEF=AABC-AAFE-ABDF-ACED 237872 D B F CEDOTO ASPID A 3 基本69 3 [(18+TA)S DA÷8/ D AAFE ABDF ACED * △ABC △ABC △ABCAAROC AL-QAPNY A 2 E JE SETIAA C △ABC の辺 BC を 2:3に内分する点をDとし,辺 CA を 1:4 に内分する点を E とする。 また, 辺ABの中点をFとする。 △DEF の面積が14のとき △ABC の面積を求めよ。 On+IA (p.418 EX47 G

回答募集中 回答数: 0
数学 高校生

79.1 証明を考えるときに、「中線の定理とか中点連結定理が使えるな」と考え、ADを伸ばそうなんて思いつきもしなかったのですが、経験を重ねていけば思いつく、というやつですか? それとも証明内容をそのまま図示(今回だと2ADをそのまま書いてみる)することは考え方の候補として持... 続きを読む

426 基本例題 79 三角形の周の長さの比較 △ABCの3つの中線をAD, BE, CF とするとき (1) 2AD <AB + AC が成り立つことを証明せよ。 (2) AD+BE+CF < AB+BC+CA が成り立つことを証明 せよ。 [CHART 三角形の辺の長さの比較 解答 (1) 線分 AD のDを越える延長上に DA' =AD となる点A'をとると四角 形 ABA'C は平行四辺形となる。 ゆえに AC=BA' △ABA' において TUISHO SET COMM 指針 (1) 2ADは中線 AD を2倍にのばしたものである。 _#WLXOASKORA 中線は2倍にのばす 平行四辺形の利用 右図のように,平行四辺形を作ると (DA'=AD), AC は BA' に移るから, △ABA' において, 三角形の辺の長さの関係 ! (2辺の長さの和)> (他の1辺の長さ) を利用する。 (2) (1) は (2) のヒント 他の中線 BE, CFについても (1) と同様の不等式を作り,それらの辺々を加える。 AA' <AB+BA' よって (2) (1) と同様にして 2AD<AB+AC ...... 練習 ③ 79 (3) 2BE < BC+AB 2CF <CA+BC ①~③の辺々を加えると ゆえに ① 3 ......... D 基本事項 HA TOSCA ①1 角の大小にもち込む 12 2辺の和>他の1辺 P A' OCASE 2 (AD+BE+CF) <2(AB+BC+CA) AD+BE + CF <AB+BC+CA A B B C DAS 00000 D D A' 1855 中線は2倍にのばす C 平行四辺形の対辺の長さは 等しい。 PORTCOU <OS DACEA) 不等式の性質 a<d, b<e, c<f DAL a+b+c<d+e+f 三角形の2辺の長さの和は 他の1辺の長さより大きい 定理) STARTS AN 212863873 (1) AB=2,BC=x, AC =4-x であるような △ABCがある。 このとき、xの ERA の範囲を求めよ。 (2) △ABCの内部の1点をPとするとき、次の不等 [岐阜聖徳学園大 ] 証明せより 基 (1 (2 指針 ! [C 解 (1) て 2 (1 よ と F VE (1 d 検 上 B 練

未解決 回答数: 1
数学 高校生

(2)についてdyする理由は分かるんですが、なぜxについてdyなんですか?-cosxじゃない理由を教えてください。

-f(x) ex re I 117× 基本例題257 曲線x=g(y) とy軸の間の面積 次の曲線と直線で囲まれた部分の面積Sを求めよ。 y=elogx, y=-1, y=2e, y 軸 (1) (2) y=–COSA 指針≫ まず, 曲線の概形をかき, 曲線と直線や座標軸との交点を調べる。 (1) y=elogxをxについて解き, yで積分するとよい。 でもよい。 解答 (1) y=elogx から (0≤x≤π), y=- 1 2 y=-. xについての積分で面積を求めるよりも、計算がらくになる。 (2) (1)と同じように考えても,高校数学の範囲ではy=-cos x を x=g(y) の形にはできない。そこで置換積分法を利用する。 (1),(2) ともに別解のような,長方形の面積から引く 方法 1≦y≦2e で常に x>0 2e よってS=Set s=S²₁₁ e ² dy=[e·e ² ] ²₁ =e.e² - e•e-² =e³-e¹-1 x=e² (2)y=-cosx から よって s=f, xdy=San xsinxdx 3 =[-x cos.x], " + S* 3 COS X =+=+0=72 dy=sinxdx =xl-v 2 π = - 1²/31 (-1/2) ++ 357 - 1²/24 (3) y=tanx cos xdx 1/² T 2373 +|sinx| J 練習 257 (1) x=y²-2y-3, y=-x-1 (2) y= NEJST y=1, y=- 2' (0≦x< </ (0<x< 1/7). YA 2e 0 V軸 y 0 S 1 1 2 T y x S 1 2' y軸 12 2 e² 1 2e+1 Elm 1 2 3 ! e² ↑ x=ee 17/08 - 12/20 π π 3 3 次の曲線と直線で囲まれた部分の面積Sを求めよ。 #d Fam Ⅱ 2 p.424 基本事項 ③3 y=–cost 1 2 y=√3, y=1, y 軸 π x y =2e³+e² d =FF 重要 263 x=g(y) (1) の 別解 (長方形の面積か ら引く方法) 常に g(y)≥0 s=Sg(y)dy S=e²(2e+1) re² -Set (elogx+1)dx -[e(xlogx-x)+x]+ sinx =e³-e¹-² (2) の 別解 (上と同じ方法) S= = ²/37 •( ²1² + ²/² ) * * -—-S₁²(−cos x + 1)dx 1 1 30. 37503825 427 Op.440 EX213 8章 38 面積

未解決 回答数: 1