学年

教科

質問の種類

数学 高校生

エオがわかりません。 解説で言ってる事がわかりません。 3枚目の方法で自分で解いてたのですが、計算がやばいことになってしまいこの式を解けば答えは求まるのですが共通テストなので時間がかかってしまうと思い別の方法がないかと解説を見たのですが、解説が何を言ってるのかがわからず、悩... 続きを読む

の前に、 第2問 (配点30) (ml) 10000.0 ((l) [1] ある店で商品の価格の変更を検討している。 次の売り上げ個数についての 定のもとで、できるだけ売り上げ総額が大きくなるように価格を決めたい。ただ 10000円 変更後の価格, 売り上げ個数は正の値をとる範囲で考えるものとする。また、 100 消費税は考えないものとする。 e 1502 草) 100.0 avee.0 8970.0 8180.0 sace.0 ST80.0 1201.0 208.0 81-01.0 89$1.0 asee.o ers1.0 売り上げ個数についての仮定 0008.0 は整数 kは正の定数とする。 8210 TTB6.0 01.0 8054.0 8180.0 x% 値上げすると、 売り上げ個数は kx % 減少する。 ただし、0の 2188.0. 80010 80 が 「kx % 減少する」 とは 「-k.x % 増加する」こととする。 き 「x% 値上げする」 とは, 「-x% 値下げする」 こととし, 売り上げ個数 8825 120 818.0 DAYS.O 18 T088.0 100.0 10882118 asser 02.0 0108.0 E8 CASE.O 1180.0 0008.0 8020 08810 8898.0 10-100 ENG.0 808.0 M assi.0 8000.0 0488.0 rese.0 3000000 18.0 1000 ×0.3 3000 TOON.O (1) 商品 A の現在の価格は1000円で、年間の売り上げ個数は3000個である。商 品 A の材料費が上昇しているため、値上げを考えている。すなわち、売り上げ 8001.0 9685.0 af£0.0 個数についての仮定においてx>0とする。また,過去のデータより,商品 A 2 4 ・31 13 についてはk = 1/3 であることがわかっている。 0188.0 1180.0 US88.0 72 4 Clae.0 AP Cual. ICET 8183.0 818.0 8180 ( 20000 8010 A 1300円 30× COTP.0 0000.0 -2008.0 00/3120000 BEG 3000000 ALL (200000 (1)商品 A について, 30% 値上げするとき, 売り上げ個数は アイ % 減少 ST28.0 ersa.0. 0200-24002 DANED 31200001800 BATO.0 18 8180.0 218.0 し, 売り上げ総額は ウ % 増加する。 また, 30% 値上げする以外に, 1184.0 2002.0 . 8188.0 エオ % 値上げするときも, 売り上げ総額は 2008.0 ウム % 増加する。 8008.0 1.0 Besa.o $180.0 sage.0 88 1088.0 0805.0 8818.0 8200.(0047 TO 988 1000×100 6038.0 TACT.0 1838.0 1 +3000 1002.0 ICAT.O 1938.0 商品 A の売り上げ総額が最大になるのは, asee.0 0000.0. ある。 GOOO.I カキ 値上げするときで 00 0000.1 IYOV.0 1505.0 a (数学Ⅰ 第2問は次ページに続く。)

解決済み 回答数: 1
数学 高校生

3番について、 体積を求めるなら、π∫《Y1(x)-Y2(x)》²dxとなると思ったのですがなぜ回答のようになるのでしょうか? P.S. 書いた後に気づいたんですけど、余分な分を取り除く作業をしないように計算しているという事ですかね

● 5 回転体の体積 媒介変数型 曲線 C は媒介変数を用いて=t-sint, y=1-cost (0≦t≦2) と表されるとする.また, 曲線 C2 はx=t-sint, y=1+cost (0≦2m) と表されるとする。 (1) CC2は直線y=1に関して対称であることを示せ. (2) CC2 の交点の座標を求めよ. (3)とC2で囲まれた部分を軸のまわりに1回転してできる回転体の体積を求めよ。 (宇都宮大工) (x(t), y(t)) 曲線が媒介変数表示されている場合の回転体の体積 考え方は面積と同じ t=ti = で、右図の場合,Server-Sony (1) (1) dt(実際の計算は変数を t=to to dt にしておこなう)となる. 解答量 れらはx座標が等しくy座標の平均が (1) C. 上の (t-sint, 1-cost) と C2 上の (t-sint, 1+ cost) について,こ (1-cost)+(1+cost) -= 1 だから直線 P19 (t-sint, 1-cost) 2 y=1 に関して対称. よって C1 と C2 は y=1 に関して対称. dx dt -y=1 (2) x=t-sintのとき =1-cost≧0だから, tが増加するとも増加する。 P2(t-sint,1+cost) これと(1) より と C2 の交点は y=1上にあり,このとき cost=0 すなわち ← P1, P2 (x 座標が が増加すると π 3 t= 11/28 202である。交点は (1-1.1)(+1.1) 3 2 (3) Cy=y(x), C2 をy=y2(x) とする. π 3 << 21/2xの範囲で1cost<0だから y1(x)>y2(x)となる.また,(1)を用いると 1(x)-2(x)=(y₁ (x) + y 2 (x)} {y₁(x)-2(x)} =2{y1(x)-y2(x)} となるから、求める体積は 3 +1 37 +1 YA P₁(t) C₁ 1 0π -1 2 X 同じ) は右に動く.y=1に関す る対称性も考えると, P1=P2 な らば,その点のy座標は1. C2Cはサイクロイドである。サイ クロイドの概形は既知として,例 えば (2) は 「サイクロイドの概形 とy=1に関する対称性から, 交 点はy=1上にある」 としてもか まわないだろう. 2π 3匹+1 π P2(t) 2 √***³¹ñ{y₁(x)² — y²(x)²} dx=2xzz(y₁(x)=2(x)} dx =2π 2 3-21-2 3 {(1-cost) (1+cost)} 3 -dt=2x2(-2cost) (1-cost)dt 1 2 dx dt 2 sin 2t 2 π af*(-2cost+(1+cos2t))dt=2x|-2sint+t+ =2π 2 =2(+4) (解答は p.152) 3-2 2 π 交点に対応するtの値は, t=- π 3 π 2' 2" 2cos2t=1+cos2t

解決済み 回答数: 1