学年

教科

質問の種類

数学 高校生

絶対値の不等式の問題です。この不等号に=がつくときはプラスで、つかないときはマイナスの時って認識しております。それで(1)、(2)もとけているんですが、何故か、(3)からそれが違くなります。マイナスなのにイコールがつきます。どなたか教えてください。

|離席などの行為は、事故やトラ 0 日曜日 祝日の下記時間帯分の 1→ 105 次の方程式、不等式を解け。 □(1) | x+2|=6 噂 312-x≤4 frer 106 次の不等式を解け。 8≤|x-1|<9 (x-11 スタッフが入口で①クールから順に整理券を配布します。 ①クール分の配布が終了しましたら、②クール分、③クール分を配 その日の全クール分の整理券がなくなり次第配布終了となります。 整理券はお1人様1枚のみ配布します。 文字が左右 (7) 90(<9 =(1)) (-1 < 8 8 Day 演習 AA44 107 次の方程式、不等式を解け。 □(1) 2x-3=|x+1| 7314-3x|≦x 絶対値 AAAD '108 次の方程式 不等式を解け。 100|x|+|23|=3 口 (2) 1 V 3 1 2 3 1次不等式 12x+315 p.40 14. p.41 15 □ (2) 3x+2=2x-1| 414x31>-x+7 2x+3<3<5<2X*} p.42 例題 14 p.43 例題2②22 □②x-1|-|x|=2x x-1/+16-221>5 (4) |x-1|+|x+315 ISSISto 値記号の中の式の値が2つとも0以上の場合と、1つは0以上で1つは負 の場合と、両方とも負の場合に分けて考える。 P=la-s|xk| 578 109 P=√a-10a+25+164 +16 について 次の問い □(1) Pを絶対値記号を用いた式で表せ。 について、 口 (2) P=2となるαの値をすべて求めよ。 Passist B (1) は まず根号の中の式を因数分解する。 (2) は, 得られた α の値が場合分けの条件を満たすか確認する。 XZ- 578-> (24) 579> (3≤X<1) OX(うなったく すべてがすっ 579 23 27 (1) X<Y X<o + Œ XCL O + 0=X<3 3/5 6-2x XCO, 0≤x C1. Il f 13 + Isi なんで≦くろ、3 ではないのか ⑨ KX33Xになっています

回答募集中 回答数: 0
数学 高校生

29.3 記述はこれでも大丈夫ですか??

52 KONGRE 基本例題 29 絶対値と不等式 8X①000 次の不等式を証明せよ。 (1) |a+b|sa|+|bl(2) la|-|b|≤|a+b)(3) |a+b+c|≤|a|+|b|+| 基本28 重要 30 de+pas 指針 (1) 例題 28 と同様に,(差の式)≧0 は示しにくい。 辺 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0の A≧B⇔A'≧B'⇔A'-B'≧00mm) の方針で進める。また,絶対値の性質(次ページの①~⑦) を利用して証明してもよ (2),(31) と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 CHART 似た問題 1 結果を利用 方法をまねる 解答 口(1)(|a|+|6|)²-|a+b=a²+2|a||6|+b²-(a²+2ab+b2) =2(abl-ab)≧0 この不等式の辺々を加えて (2)(a よって la+b≧(|a|+|6|) |a+b≧0,|a|+|6|≧0から |a+b|≦|a|+|6| この確認を忘れずに。 別解一般に,-|a|≦a≦al, -16≧0≦16 が成り立つ。|4|≧4,|A|≧-A から -|A|≦a≦|A| −(|a|+|b|)≤a+b≤|a|+|b| したがって |a+6|≦|a|+|6| (2) (1) の不等式でa の代わりに a+b, の代わりにと おくと de+nas (a+b)+(-6)|≦|a+6+1-6| よって |a|≧|a+6|+|6| [別解 [1] |a|-|b|<0のとき a+b≧0であるから,|a|-|6|<|a+6|は成り立つ。 [2] |a|-|6|≧0のとき METOD |a+bP-(|a|-|6|)²=a²+2ab+b2-(²-2|a||3|+62) =2(ab+labl)≧0 ゆえに |a|-|6|≦la+b1 よって (|a|-|6|)≦la+b2 |a|-|6|≧0, la +6|≧0であるから よって (1) [1],[2] から lal-lb|≤|a+b| (3) (1) の不等式での代わりにb+c とおくと la+(b+c)|≦|a|+16+cl la+b+cl≦|a|+|6|+|c| どのよ ≦|a|+|6|+|c| 不 oktob SARA ◄|A|²=A² |||ab|=|0||0| 10-357 20 TATAR -B≤A≤B ⇔ [A]≦B ズーム UP 参照。 lal-1b|≤|a+b||+o)S\ |a|-|6|<0≦|a+6 [2] の場合は,(2) の左辺 右辺は0以上であるから、 (右辺(左辺) 0 を示 す方針が使える。 BY 05 (67)S 1930 次の不等 不等式√²+ 62 +1 √ x2+y2+1≧lax+by+1を証明せよ ** (1) の結果を利用。 (1) の結果をもう1回利用。 (16+cl≦|6|+|cl)

回答募集中 回答数: 0
数学 高校生

この問題がさっぱり分かりません。分かりやすく説明してくれると助かります。答えはところどころ省いているので2枚目に正答を載せておきます。よろしくお願いします!!

例題4 全体集合Uと, その部分集合 A, wn(U)=50, n(A) =36, n(B) = 275/Taka dia である。このとき,"(A∩B)のとりうる値の最大値と最小値を求めよ。 まぁ 22-03 解答 n (A) >n(B) であるから, n (A∩B) が最大値をとるのはA⊃Bのときである。 このとき, ANB=B であり n(An B) = n(B) = 27 n(A)+n(B)>n(U) であるから, n (A∩B) が最小値をとるのは AUBU のときである。 n(AUB) = n(A) + n(B) − n(ANB) め よって XA 52 n (An B) n(An B) = n(A) + n(B) - n(AUB) = 36+27-50=13 最大値 27, 最小値 13 圏 - U こ n (A) + n(B) *n (v) 30425-60 ADB (1) + n(ANB) PASWAT 21 全体集合Uと, その部分集合 A, B について, n(U)=60, n(A)=30, n(B)=25である。 このとき,次の個数のとりうる値の最大値と最小値を求めよ。 AA音楽 4 例題 n (An B) E = (87A)R SA= (SUA) .02=(0)* As Bart (ank)µ¢ EAN B = B n (ANB) = n(B) = 25 (In) (S) n (AUB) n(A)n(B) <n (U) 2534) 最大値→ANB=0のとき n(AUB) = n(A) + n(B) =30+25) 1 = 55 n (A)-n (ANB) AnB = Ø - 30-n (AMB) x Fo2 n (ANB) IF n (AMB) =0 n (AMB) = 25 B このとき最小値 AUB=U n (AMB) = 0 ADB 25. 1.180 x 30 最小値をとる。 25.0 ANE Ang 最大55 ANE SENS A O 30 25 h(A) > n(B) [3) n(AUB) Free n (AUB) = n(A)=30 最少値を のとき 最大値 30 最小値 5 最小 30 £3 917 ADB をとる。

回答募集中 回答数: 0
数学 高校生

(イ)の解説の赤線部分 正負が入れ替わるから第三項以上のところも関係あるんじゃないかと、、、

重要 例題 6 n桁の数の決定と二項定理 (1) 次の数の下位5桁を求めよ。 (ア) 101100 (イ) 99100 (2) 2951 を 900で割ったときの余りを求めよ。 解答 指針 (1) これらをまともに計算することは手計算ではほとんど不可能であり,また,それ を要求されてもいない。そこで、次のように二項定理を利用すると,必要とされ る下位5桁を求めることができる。 (1)(ア) 101100=(1+100)'=(1+102) 100 101100=(1+100)10=(1+102)100 これを二項定理により展開し,各項に含ま (ア) れる 10 (nは自然数)に着目して,下位5桁に関係のある範囲を調べる。 (イ) 991%=(−1+100)100=(-1+102) 200 として,(1) と同様に考える。 (2)(割られる数)=(割る数)×(商)+(余り) であるから,2951を900で割ったと きの商を M, 余りをrとすると,等式 2951 = 900M+r (Mは整数, 0≦r<900) が成 り立つ。295=(30-1) 51 であるから,二項定理を利用して, (30-1)を900M+r の形に変形すればよい。 =1+100C1×102 +100C2×10+10°×N (Nは自然数 この計算結果の下位5桁は,第3項,第4項を除いて も変わらない。 よって,下位5桁は 10001 (イ) 99100= (−1+100)100= (−1+102) 100 =1-100C ×102 +100C2 ×10+10°×M 00000 =1-10000+49500000 +10°×M PAS =49490001+10°×M (Mは自然数) この計算結果の下位5桁は, 第2項を除いても変わら ない。 よって,下位5桁は 90001 [類 お茶の水大] 基本1 (2) 2951(30-1)51 301-110¹×N (N, n lÉZ n≧5) の項は下位5桁 計算では影響がない。 (展開式の第4項以下を とめて表した。 展開式の第4項以下 とめた。 なお, 99100 100 桁を超える非常に きい自然数である。 900=302 =3051-51C」×3050+51C49×302+51C50×30-1(-1)は =302/3049 が奇数のとき 2048 ...... 6149) +51×30-1 個数のとき

回答募集中 回答数: 0
数学 高校生

最後の問題なんですが 30/13÷10/13ではないんですか? (ア)のところで2回目に白玉が出たら事象Bは満たされないのでは? (ウ)の2回目に白玉が出るときも満たされないと思うのですが、、、 また最後はなぜ2/1を割るのでしょうかすでに事象Aは太郎さんが勝つと指定し... 続きを読む

第3回 第5話は、いずれかを選択し、解しなさい。 第3問) (配点20) 個と白玉2個と黒玉1個が入っている袋がある。 の中から3個の玉を取り出すとき、取り出した玉が赤玉2個、白玉 個である確率は ア である。また、袋の中から3個の玉を取り出す とき、少なくとも1個の赤玉を取り出す確率は エオ カキ である。 (2) の中から玉を1個取り出し、色を調べたら袋に戻すことをす。こ のとき、取り出した王が、 赤玉2個、白玉4個である確率は ケ である。 さんが話をしている。 今度はこの中から こんな操作をしてみてはどう? の中から 取り出された2個の玉の色が異なれば、さらに 中から玉を1個取り出し終了とする。 袋の中から最初に取り出された2 の王の色が同じであれば、ここで終了とする。 つまり、最初に取り出された2個の玉の色が異なれば3個 り出された2個の玉の色が同じであれば、2個の玉を取り出すことにな るね。 花子 そう。 取り出された玉について。 赤玉の個数が白玉と黒玉の合計の 数より多ければ私の勝ちで白玉と黒の合計の 赤玉の個数よ り多ければ太郎さんの勝ちということで勝負しましょう。 の中から玉が2個取り出されて、操作が終了するは 花子さんが勝つ確率は ツテ トナ 取り出すことにしよう。 ス セ の中から3色の玉が取り出される確率は である。 である。 ソ タチ 太郎さんが踊ったとき、3個の玉が取り出されている条件付きは サシ である。

回答募集中 回答数: 0