学年

教科

質問の種類

数学 高校生

1番です。解説は[1]などの記述に数行使っているため 最後に3つまとめて答えを示していますが、 私の記述の場合、同じことを2回書いてるような記述になっています。この記述でも問題ないですか?

重要 例題110/2次不等式の解法 (4) 次の不等式を解け。 ただし, aは定数とする。 (1) x2+(2-a)x−2a≦0 (2) ax² ≤axise 基本106) 指針 文字係数になっても, 2次不等式の解法の要領は同じ。 まず, 左辺=0 の2次方程式を解く。 それには の2通りあるが,ここで ① 因数分解の利用 [2] 解の公式利用 は左辺を因数分解してみるとうまくいく。 α<βのとき (x-a)(x-β)>0x<a, B<x (x-a)(x-B) <0⇒a<x<B α, βがαの式になるときは,αとβの大小関係で場合分けをして上の公式を使う。 (2) x²の係数に注意が必要。 > 0, a = 0, a < 0 で場合分け。 CHART (x-a)(x-B) ≧0の解α, βの大小関係に注意 解答 (1) x²+(2-a)x-2a≦0から (x+2)(x-a) ≤0 [1] a<-2のとき, ① の解は [2] α=-2のとき, ①は (x+2)² ≤0 よって, 解は x=-2 [3] -2 <a のとき, ① の解は-2≦x≦a 以上から a<-2のとき a≦x≦-2 a=-2のとき x=-2 -2 <αのとき -2≦x≦a ax(x-1) ≤0 (2) ax² ≦ax から [1] a>0のとき, ① から よって, 解は 0≤x≤1 [2] α=0のとき, ① は これはxがどんな値でも成り立つ。 よって、 解は すべての実数 [3] a<0 のとき, ① から x(x-1) 20 よって, 解は x≦0, 1≦x 以上から x(x-1) ≤0 0.x(x-1)≦0 a>0のとき 0≦x≦1; a=0のとき すべての実数; a<0のときx≦0, 1≦x ① 00000 [1] teli [2] [3] Vital -2 ① の両辺を正の数α で割る。 0≦0 となる。 は 「<または=」 の意味なので、 <と = のどちらか 一方が成り立てば正しい。 < ① の両辺を負の数αで割る。 負の数で割るから, 不等号の向き が変わる。 注意 (2) について,ax Sax の両辺を ax で割って, x≦1としたら誤り。なぜなら, ax=0のと きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからである。 177 3章 13 2次不等式

回答募集中 回答数: 0
数学 高校生

線で引いたところ途中式お願いしたいです。 自分そこまで字があまりうまくありませんが、書いたので途中式教えてください!

110 2次不等式の解法 (4) 次の不等式を解け。ただし、qは定数とする。 x²+(2-a)x-2a≤0 例題 (2) ax Sax 文字係数になっても、 2次不等式の解法の要領は同じ。 まず、左辺=0の2次方程式を解く。 それには ①1 因数分解の利用 ②2 解の公式利用 の2通りあるが, ここで は左辺を因数分解してみるとうまくいく。 x²+(2-a)x=2a≤05 (x+2)(x−a) ≤0 [1] a<-2のとき, ① の解は a≦x≦-2 2]=-2のとき, ① は (x+2)² ≤0 よって、 解は x=-2 3] -2 <a のとき, ①の解は -2≦x≦a 以上から a<-2のとき a≦x≦-2 a=-2のとき x=-2 ー2<αのとき -2≦x≦a ax Sax から ax(x-1) ≤0... α<βのとき (x-a)(x-β)>0x<α,B<x (x-α)(x−ß)<0⇒a<x<ß α,βがα の式になるときは,αとβの大小関係で場合分けをして上の公式を使う。 (2)x²の係数に注意が必要。 a>0,a=0, a < 0 で場合分け。 CHART (x-α)(x-B) 0の解αβの大小関係に注意 ...... x(x-1) ≤0 ■] a>0 のとき, ① から よって、 解は 0≤x≤1 e] α=0 のとき, ① は これはxがどんな値でも成り立つ。 よって、 解は すべての実数 ] a<0のとき, ① から よって解は x≦0, 1≦x 上から 0.x(x-1)≦0 x(x-1)≥0 a>0のとき 0≦x≦1; α=0のとき すべての実数; a<0のとき x≦0, 1≦x 0000 [1] 基本106 [2] [3] to ① の両辺を正の数αで割る。 0≦0 となる。 は 「くまたい の意味なので、くと = のどち 一方が成り立てば正しい。 ① の両辺を負の数 α で割る 負の数で割るから,不等号 が変わる。 (2) について, ax² Sax の両辺をax で割って, x≦1としたら誤り。なぜなら, ax きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからであ

回答募集中 回答数: 0
数学 高校生

なんのために最後に漸近線を求めているのですか?

重要 例題 78 z を 0 でない複素数とし,x,yをz+ 1 2 =x+yi を満たす実数,αを0<a</ を満たす定数とする。z が偏角 αの複素数全体を動くとき、xy平面上の点 (x, y) の軌跡を求めよ。 *U*2301 [類 京都大] 重要 26 解答 指針偏角αの範囲が条件であるから、極形式z=r (cosatisina) (0) を利用。 ■iの形に表すことにより,x,yをそれぞれr, aで表す。 12+- 2 つなぎの文字を消去 して,x,yだけの関係式を導く。なお、>0や0<a< より, xの値の範囲に制限がつくことに注意。 ゆえに TOADE z=r(cosatisina) (x>0,0<a</1/2)とすると ゆえに 0<a</であるから よって r+ cos a' - 1 (cosa + sina) == ² ( cos x r= 2 COS r 2 -=1から 練習 ③78 1 z+ -=r(cosa+isina)+¹(cosa-isina) 2 * = = =(r+ + )cosa+i(r— — )sina cosa, y=(r-1) sina x=(x+1/27) 1 x 2 cos a x² Acos2a 双曲線 w=z+. =r+ r a² cos a よって x≧2cosa また, >0 から ゆえに したがって 求める軌跡は osax + cos a>0, sin a>0 y sina y 表す図形 (2) r sin a したがって 4sin² a ここで, >0であるから, (相加平均) (相乗平均) により x²y² COS α -(tana)x<y<(tana)x 4 cos' a 4sin'α ;-). - / - ( 1 x =2 2. 等号はr=1のとき成り立つ。 _____________> +___>0, sina sin a COS α sina sina)=1 COS α COS α 63401 -=1のx≧2cosα の部分 < 絶対値や偏角αの範囲 に注意。 1 2 =-{cos(-a)+isin(-a)} ◄2+1/2=x z+ =x+yi 検討 第4章で学ぶ極 限の知識を用いて, y が実数 値全体をとりうることを調べ ることもできる。 lim m(x-¹)=∞, に lim (-1)=-∞であり, sinα> 0から lim y=-∞, limy = ∞ r+0_ →0 点 (x, y) の軌跡は次の図の 部分。 (0) y=(tana)x を求めている -2cosa / 2cosa y=-(tana)x 0 でない複素数zが次の等式を満たしながら変化するとき, 点z+-が複素数平 面上で描く図形の概形をかけ。 (1) |2|=3-(2) |z−1|=|z-i| 139 2章 10 媒介変数表示

回答募集中 回答数: 0