学年

教科

質問の種類

数学 高校生

問題⑵⑶の数学的帰納法について4つ質問させて下さい!質問量が多くてすみません… ①写真1枚目の赤の下線を引いた部分について、私の解答(写真2枚目)では全て、整数でなく自然数と書きました。私は赤線部分は自然数の範囲に収まるのかなと思っていたので、なぜわざわざ整数と書いている... 続きを読む

2021年度 〔4〕 α=2, b=1および リー an+1=2a+36, b +1=α+2b (n=1, 2, 3, ...) で定められた数列{an}, {bn}がある。 C = a b とおく。 (1) c2 を求めよ。 149 (2) cm は偶数であることを示せ。 (3) nが偶数のとき, cm は28で割り切れることを示せ。 ポイント 連立の漸化式で定められる2つの数列の一般項の積についての数学的帰納法 による証明の問題。 (1) 漸化式でn=1 とおいて求める。 (2) 数学的帰納法により証明する。 (3)n=2mとおいて, m について数学的帰納法で証明する。 解法 (1) a2=2a+3b1=4+3=7 b2=α +261=2+2=4 より C2=azbz=7×4=28 (2) a1=2,b=1,4+1=2a+3bb1=an+2b (n=1, 2, 3, ... より帰納的に a b が整数であると言えるので, cm=amb" も整数である。 cm が偶数であることを数学的帰納法により証明する。 (I)n=1のとき,c=a,b=2×1=2より C1 は偶数である。 (II)n=kのとき cが偶数であると仮定すると, a b は偶数であるから=211は 整数) とおける。 n=k+1のとき ( Level A TRAIGHT Ck+1=ax+1bk+1=(2a+3b) (+26) =2a²+7ab+6b²=2a²+14Z+6b2² =2(a²+71+3b²2 ) ここで, a2+71 + 3b²2 は整数であるから Ck+1 も偶数である。 (I), (II)より すべての自然数nに対してcm は偶数である。 (証明紋) (3) n=2m(mは自然数とおき, C2mm が28で割り切れることを数学的帰納法によ り証明する。 (I) m=1のとき, c2 = 28 より 28で割り切れる。 (II) m=kのときc2が28で割り切れると仮定すると, 28 (1は整数)とおけ る。 m=k+1のとき C24+2=a2+2b24+2 = (2a2+1+3b2+1) (a2+1+2b2+1) = {2 (2a2+362) +3 (a₂+2b₂)}{2a+3b₂+2 (a₂+2b2x)} = (7a2 + 12b2) (4a24+7b₂24) = 28a2²+97a2b2+84b2² = 28a2²+97-28/+84b2x² = 28 (a24² +971 +3b₂²) D ここで, a² +971 +3bz² は整数であるから 22は28で割り切れる。 (I), (II)より. すべての自然数mに対して C2me は28で割り切れる。 ゆえに,nが偶数のとき, cm は28で割り切れる。 (証明終)

回答募集中 回答数: 0
数学 高校生

この 10c4という計算は10c6にはならないんですか?ならないとしたらなぜでしょう。nCr🟰nCn-rと私は習いました。

でで ご購 白チ・ ■基 基本 解説 に な生 コード! 例量 シ [追加] スモ 1 344 例題 準 34 余事象を利用した確率 (順列・組合せ利用) い確率を求めよ。 (2) 赤球4個と白球6個が入っている袋から同時に4個の球を取り出すと (1) 5枚のカード a, b, c, d, e を横1列に並べるとき, baの隣になら 取り出した4個のうち少なくとも2個が赤球である確率を求めよ。 CHART GUIDE 余事象の利用 〜でない, 少なくとも~ には余事象の近道あり 求めるのは, (1) baの隣になる場合 (2) 赤球が 0 個または1個の場合 確率である。 P(A)=1-P(A)=1- 5! 通り (1) 5枚のカードの並べ方は 「bがaの隣にならない」という事象は「bがaの隣になる」 という事象 Aの余事象A である。 aとbのカードをひとまとめにして, 1枚のカードと考える 4通り と、これと残りの3枚との合計4枚の並べ方は 4! 通り そのどの場合に対しても, ひとまとめにした2枚のカードの 並べ方は 2! 通り よって 求める確率は 4!×2! 5! 2・1 5 ·=1-- 本例題10.16.30 313> 5 =210(通り) (2) 球の取り出し方の総数は 10C4= 「少なくとも2個が赤球」 という事象は 球が0個または 1個」という事象 Aの余事象A である。 [1] 白球を4個取り出す場合 6C4=6C2=15 (通り) [2] 赤球を1個,白球を3個取り出す場合 4 C1 X6C3 = 80 (通り) [1],[2] は互いに排反であるから、赤球が0個または1個で ある場合の数は 15+80=95 (通り) 10・9・8・7 4・3・2・1 よって 求める確率は P(A)=1-P(A)=1- 95 23 210 42 の余事象の 0 000 2! 通り 残り3枚 ◆余事象の確率 少なくとも2個赤 | : 4 白 : 0 赤: 3, 白 : 1 赤 2, 白:2 赤: 1:3 赤: 0, 白 : 4 ◆ 余事象の確率 基 本 例題 35 CHART & GUIDE 100 枚の札 札を引く」 ANBは 互いに 余事象 1から100 が3の倍数 100 枚の 象をA, と 求め ここで, A={ ANE TRAINING 34③ (1) A,B,C,D,E,Fの6人が輪の形に並ぶとき, AとBが隣り合わない確率を求 め。 [類 神奈川大 ] (2) 赤玉5個、白玉4個が入っている袋から, 4個の玉を同時に取り出すとき、取り出 した玉の色が2種類である確率を求めよ。 である: したが Le 確率 PC [1] [2] [1] は 分がな したた ANE TRA 「た 1 あ

回答募集中 回答数: 0