学年

教科

質問の種類

数学 高校生

三角関数の問題です。 赤く囲んだところが分かりません。 よろしくお願いします。

63 図形の計量と加法定理の利用 三角形ABCにおいて, AC=3, ∠B=z, <C=8-7 とする。ただし, 0 は cos0=- << を満たす角とする。 (1) sin= であり, 8についての不等式が成り立つ。 ウの解答群 © <<* ① ②くく ③ << (2) sin ∠C= であり、AB=キ+√ク] である。 [ (3)辺BC上に, BAD 120 となるように点D をとることができる。このとき、 ケコ + サ AD= である。ただし、コシ とする。 各 (1)<6πより, sin0 0 であるから sin 0 = √1-cos² = √1-(-3)=√ 0 √2 sin-sin-sin = 2 1 2 2 24 sin= ....... ① 6 = sin-27- ...... ② 6 ① ④ 3 √18 sin -π= ..... ③ 6 -1 10 sin1 = ......④ <Point 大小関係は②>①>③>であるから / <<1/2(①) (2) 加法定理により sin ∠C = sin 0- sin(0-3) sincosmo-cos sin / B /6 = △ABCにおいて, 正弦定理により AB AC in (0-1) AB sinc 3 3+√6 6 2 3+√6 AB = 6• O <-114- 2 J2 こう解く! LLA STEP 不等式から問題解決のための 1 構想を立てよう ①~③で与えられている角を 正弦の値に置き換えて比較す る。 STEP 図をかいて、適切な定理を用 ②いよう 与えられた条件を図で表すと, 向かい合う辺と角が2組ある ことに気づくだろう。 このよう なときは, 正弦定理を用いる とよい。 A 分母を6にそろえて比較する。 B 加法定理 sin (a-B) =sinacos β-cosasinβ C 角度の情報が多い三角形に対し ては、 正弦定理を用いるのが有 効である。 9+3x

回答募集中 回答数: 0
数学 高校生

青チャート数2b 21の解説について。段取りはわかったのですがなぜanx^n-1という最高次数の項と2xが比較されているのでしょうか?恒等式というのは存じているのですが、g(x)の中に同じ次数を持ったやつがいる可能性はないのですか? 申し訳ないです。解説お願いします。

重要 例 21 等式を満たす多項式の決定 多項式 f(x) はすべての実数xについてf(x+1)f(x)=2x を満たし, f(0)=1 [一橋大] であるという。このとき, f(x) を求めよ。 指針 例えば、f(x)が2次式とわかっていれば, f(x)=ax2+bx+cとおいて進めることが できるが,この問題ではf(x) が何次式か不明である。 →f(x)はn次式であるとして, f(x)=ax+bx-1+.. (a=0, n ≧1) とおいて 進める。 f(x+1)f(x)の最高次の項はどうなるかを調べ,右辺2x と比較するこ とで次数 n と係数 α を求める。 なお, f(x) = (定数) の場合は別に考えておく。 f(x)=c (cは定数) とすると, f(0) = 1から f(x)=1 解答これはf(x+1)- f(x)=2.x を満たさないから,不適。 よって, f(x)=ax+bxn-1+... ると (a≠0, n ≧1)(*) とす f(x+1)f(x) ...... =a(x+1)"+6(x+1)"'+......-(ax+bx"-1+.....) =anx-1+g(x) ただし, g(x) は多項式で,次数はn-1より小さい。 f(x+1)f(x)=2xはxについての恒等式であるから,最 高次の項を比較して n-l=1 ...... ..0, an=2 ..... ....... よって 2x+6+1=2x この等式はxについての恒等式であるから すなわち b=-1 したがって f(x)=x-x+1 ② b+1=0 基本 15 この場合は, (*)に含ま れないため、別に考えて いる。 ◄(x+1)" ①から n=2 ゆえに、②から a=1 このとき, f(x)=x2+bx+c と表される。 f(0)=1から c=1 またf(x+1)-f(x)=(x+1)^+6(x+1)+c-(x2+bx+c)c=1としてもよいが, =2x+6+1 結果は同じ。 =x"+nCix"-1+nC2x"-2+... のうち, a(x+1)+1-ax” の最高 次の項は anxn-1 で 残 りの頃はn-2次以下と なる。 <anxn-1と2x の次数と 係数を比較。 係数比較法。 POINT 次数が不明の多項式は,n 次と仮定して進めるのも有効

回答募集中 回答数: 0