学年

教科

質問の種類

数学 高校生

赤い下線の変形で他の文字ではなく、y1を消しているのは、2行前のPFベクトル・nベクトルがc、x1、a2で表されているのに合わせにいくためですか?回答よろしくお願いします。

186 例題 96 焦点と接点を結ぶ直線と接線のなす角 楕円 1,2 D ★★★★ 621 上の任意の点Pにおける接線をとし 2つの焦点を F, F とするとき,接線1が2直線 PF, PF" となす角は等しいことを示せ。 目標の言い換え 2直線のなす角 → (傾き) = tan b, と tan0 = tan (01-02)=・・・(加法定理)・・・の利用 → 接線や直線 PF, PF' がx軸に垂直のときを 分けて考えなければならない。 (大変 ) ⇒ 接線の法線ベクトルをすると 法線ベクトルの利用 すべての場合を考えることができる。 PF のなす角α) = (n と PF のなす角β) F ⇒ cosa = cosβ を目指す。 C y 02 0₁ 0 x Action» 接線が直線となす角の性質は、法線が直線となす角を利用せよ α>b>0 としても一般性を失わ B a P =d2-2cx1+ CX であるから |PF| = q – Cx1 =a- 同様に, PF'= (-c-x1, -y)より a CX1 a PFn= -C-1,|PF|=α+ CX1 a PF, PF' とnのなす角をそれぞれα, β(0≦a≦ MBS) とおくと cosa= cos B Action. PF • n CX1 1 a² CX1 a- n an PFn (a PF.n |PF||| cosa=cosβ (a + cxi)\n\ CX1 a sanB≦πであるから alml a=Ba したがって, 接線が2直線 PF, PF'′ となす角は等し Point...焦点と接点を結ぶ直線と接線のなす角 - 光線が直線に当たって反射するとき,右 図1のように入射角と反射角の大きさ は等しくなる。 曲線上の点Pに当たって 反射する場合には,図2のように、点P における接線に対して入射角と反射角を 考え、直線と同様にこれらの大きさは等 しくなる。 よって ない。 焦点F'(-c, 0),F(c, 0) (c>0) y▲ P(x1,yi) とすると c² = a²-b² えればよい。 b>a (長軸がy軸上) のときも同様に証明でき ることが明らかであるか > bの場合だけ考 F また,点P(x1,y1) とすると, 接線 F -a -C 0 ca の方程式は X1X Viy + a² 62 =1 よって, lの法線ベクトルの1つは X1 n = ここで, PF = (c-x, y) より n = (a, b) 200 PFn=(c-x1 X1 09D 62 2 CX1 X1 Yı 2 a² a² 62 2 Pは楕円上の点であるから+2=1 よって PF = CX-1 · n 直線 ax + by + c = 0 の 法線ベクトルの1つは 0円 図 1 例題96で証明したことは, 右の図3において, 点Pが のどのような位置にあってもこの性質が成り立つこと 楕円の1つの焦点から発射した光線が楕円に当たって反 と、すべてもう1つの焦点に集まることが示されたこと (さらに, p.188 Play Back 12 も参照。) また ||PF|2=(c-x)2+y^ X1 =c2-2cx1+x2+621 = c2+b2-2cx1+ (1-1) x² 62 a" したがって、盗んできた 練習 96a,bはa>0,6≠0 を満たす定数とする。 の交点Pにおける放物線Cの接線をしと 男接線が2直線, PF となす角は等し

解決済み 回答数: 1
数学 高校生

微積分の問題で(2)についてです。Y=X^3-4X^2+4Xの極大値(2/3,32/27)をY=KXに代入して求めた傾き(K)よりも小さけ れば共有点を2個もつと考えたのですが間違っていました。どこで間違えてるのか教えてほしいです🙏🏻

微分法・積分法 3次関数のグラフ a=0, b=0のとき y=x³ y=3x で x=00 a=0, x=0のときは0となるから、Cの形はGである。 b=1のとき y=x+x Cの概形はG2 である。 AB y=3x2+1 で すべてのxについて>0となり、増加関数であるから AC a=-2.6=0のとき y=x-2x y=3x²-4x=3x(x-1) 4 3=0より x=0.1/2 0 となりの増減表は次のようになる。 XC + 0 - y' 0 1430 + 32 y 27 よって、Cの概形はGである。 A D () a=-4,6=4のとき y=x-4x2+4x y' =3x²-8x+4 = (x-2)(x-2) y=0より x= 2 3' 2 となり、yの増減表は次のようになる。 A G, G2 とも増加関数であるが、 (ア)ではC上の原点における接線 この傾きが0となるから, G. G2 のうちGが正しいグラフとな る。 B 曲線 y=f(x) 上の点(a.f (a)) における曲線の接線の傾きは f'(a) C (ア)の場合と違って、x軸に平行 となる接線が引けないような増 加関数であるから, G. G2 の うち G2 が正しいグラフとなる。 x ... y' 3 y + 23037 .... 2 0 + E 0 よって、Cの概形は G3 である。 (ア)~(エ)から、G1~G の曲線Cの概形の組合せは②となる。 |(2) a=-4,b=4 のとき y=x4x2+4x 上の原点における接線の 方程式はx=0 のとき,y'=4であるから F y=4x 右の図より求めるkの値の範囲は 0<k<4 2 y 2 y=x-4x²+4x/ y=4x y=kx 0 2 x 増減表からCは原点でx軸に 接している。 E 増減表から、Cは点 (20) x に接している。 F 接線の方程式 曲線 y=f(x) 上の点 (a.f (a)) における曲線の接線の方程式は y-f(a)=f'(a)(x-a) Point 2=0のとき=4(60)をまから 傾き ここを代入して (1) では、 導関数の符号を把握して3次関数のグラフの増減が正しく理解でき |ているかが問われている。 (2)では,曲線 y=x4x²+4x は原点を通りx と接することがわかっている。そのことを利用して直線 y=kxとの共有 点の考察をしていけばよい。 G 直線 y=kx の傾きが0より大 きく4より小さいとき、 曲線 y=x-4.x +4x と直線 y=kxx>0における共有 点は2個となる。 -79-

解決済み 回答数: 1
数学 高校生

数Ⅱ 軌跡を求める問題です。 写真の解説一行目で、基本例題98ではいつも使っている文字としてP(x,y)としたのですが、PR98でPの座標をP(x,y)としたら間違っていて、x,y以外の文字にする、と書かれていました。 2つの問題の違い、なぜPR98の問題でP(x,y)と置... 続きを読む

基本 例題 98 曲線上の動点に連動する点の軌跡 DACTICE (木) 98 thehet 1 00000 点Qが円x+y=9 上を動くとき, 点A(1,2) とQを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 CHART & SOLUTION 連動して動く点の軌跡 p.158 基本事項 1 つなぎの文字を消去して、 x yだけの関係式を導く ...... 動点Qの座標を (s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件を s, を用いた式で表し, P, Qの関係から, s, tをそれぞれx, yで表す。 これをQの条件式に 代入して,s, tを消去する。 解答 Q(s, t), P(x,y) とする。 x+y=9上の点であるから Pは線分AQ を 2:1 に内分する点であるから s2+t2=9 13 ① (s, t) 2- A 1・2+2t 2+2t Q (1,2) 3 -, y= 2+1 3 -3 0 1・1+2s 1+2s x= 2+1 よって s=3x21.t=3v22 2 ●これを①に代入すると (321)+(3x-2)=9 ゆえに (12/21)+(1/2)=9 よって(x-1)+(y-22-4 =4 ...... ② したがって, 点Pは円 ②上にある。 逆に円 ②上の任意の点は,条件を満たす。 以上から、 求める軌跡は 中心 2) 3'3' 半径20円 P(x,y) つなぎの文字 s, tを消 去。 これによりPの条 件(x, yの方程式)が得 られる。 inf. 上の図から,点Qが 円 x2+y^2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) = 0 上の点であるから f(s, t)=0 ② s, tをそれぞれx, y で表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。 RACTICE 982 放物線y=x2 ① とA(1,2), B(-1, -2), C(4, -1) がある。 点Pが放物線 ①上を動くとき、次の点Q, R の軌跡を求めよ。 (1) 線分APを2:1 に内分する点Q (2) △PBCの重心R

解決済み 回答数: 1
数学 高校生

二枚目の赤丸のとこの考え方ってなんのために使ってるんですか?

1 数と式 1 式の値 太郎さんと花子さんは, 問題1と問題2について話している。 ア めよ。 チコに当てはまる数を求 こう解く! 問題 1 を求めよ。 2次方程式 4x+1=0 • ①の二つの解のうち、大きい方をするとき、2-4a+5の値 花子αは方程式 ①の解だから a²-4a+5 (a2-4a+1)+ とすると楽に計算できるよ。 太郎:αの値を求めてから4α+5 に代入すると計算が多くなりそうだね。 1 STEP 方程式の解の意味を押さえよ う 方程式の解は等式を成り立た せる値である。 ①の右辺が0 であることに着目して、求め る式を変形することを考える。 問題2 b= 35のとき、次の式の値を求めよ。 (1) 62+96+1 (2) 63+562+46 太郎: (26+3)イより,bは方程式 ー =0 の解だから (1) は 62+96+1=(62+ウ b+エ)+オ b ■カキ ■ク ■ケ と計算したよ。 (中略) 花子:私は,(2)で違う解き方をしたよ。 +b+エ=0から より 63= 6+ チ ......③ (2)の式に② ③を代入して計算したよ。 数と式 STEP 式の形に着目し, 構想を立て よう 「(bの1次式)=(平方根)」に 変形して両辺を平方すること で, STEP 1の考え方に帰着 できる。 太郎さんと花子さん の解法は少し異なるが,とも に求める式の次数を低くして いる。 No. 解答 問題1について x = q は, 方程式x4x+1=0の解であるから a²-4a+1=0 A が成り立つ。この式の利用を考えると a²-4a+5=(a²-4a+1)+4 B 問題2について =0+4=4 〔太郎さんの解き方〕 6=3+√5 より 2 CA xα 方程式 f(x) = 0 の解の とき B f(a)=0 α-4a+1のカタマリを作り出す。 26=-3+√5 26+3=√5 両辺を平方して (2b+3)=5 46+126+9=5 1 Date C 右辺が平方根だけになるように 変形する。 -3bt x 3: t

解決済み 回答数: 1
数学 高校生

⑵の解説の4行目がよくわからないです、教えてください!!

10 指数関数・対 65 (1) t = 2* とおくと, t > 0 であり A 指数関数を含む関数の最小 方程式・不等式 y=4-(a+2)2' +2a =(2)-(a+2).2' +2a =ピー(a+2)t+2a a = 6 のとき, y=t-8t+12 ・・・・・・ ① となるから y=(t-4)2-4 t>0より,y=¥42,すなわち,2=4より x=2のとき,最 小値 24をとる。 また,① において y=45 とすると t-8t+12=45 t2-8t-33=0 (+3)(t-11)=0 t > 0 より t=11 オカ 2*=11 より x=log211 次に,①においてy > 0 とすると t-8t+12>0 (t-2) (t-6)>0 よってt < 2, 6 < t すなわち 2 < 2, 6 < 2* 底2は1より大きいから x < 1, log26 <x Point log26log (2×3)=1+log23より, 求めるxの値の範囲は x < 1, 1+log3 <x (2) y < 0 より t2-(a+2)t+2a <0 (t-2)(t-a) <0 1 = t² - (a+21t12A α > 2 より 2 < t < a すなわち 2 <2<a B A y=a 一般に指数関数 は正の数全体である。 したがって t=2* > 0 となる B 底2は1より大きいから 1<x<logza Point >2の条件に注意する。 これを満たす整数xの個数が1個であるとき,その整数はx=2 である から 2 <log2a 底2は1より大きいから 4<a≦8 これはα>2を満たす。 よって <ass Point 指数関数を含む不等式を考えるときは必ず底と1との大小を考えよう。 底が1より大きいときは,指数と累乗の大小関係が一致するが、 1よ り小さいときは,大小関係が逆になる。 α>1のとき>axy 0< a <1 *a*>a'<x<y 本間は底が1より大きいことから, 大小関係に特に注意しなくても正 解できるかもしれないが,底が1より小さい問題もあるので気をつけ よう (1)

解決済み 回答数: 1