学年

教科

質問の種類

数学 高校生

数Ⅱ 軌跡の問題です 解説3行目からわかりません!! 解説お願いします!!🙇

162 基本 例題 99 媒介変数と軌跡 00000 は定数とする。 放物線y=x'+2(a-2)x-4a+5について αがすべての 実数値をとって変化するとき、頂点の軌跡を求めよ。 基本 98, 重要 102 CHART & SOLUTION 基本例 直線 x x-2y- CHAR 線対称 xyが変化する文字αを用いて表される点の軌跡 つなぎの文字を消去して、xだけの関係式を導く 頂点の座標を (x, y) とすると x=(αの式),y=(αの式) の形に表される。 ここから, つなぎの文字αを消去して,xとyの関係式を導く。 解答 放物線の方程式を変形すると 点Qが Pの軌 y={x+(a-2)}-α²+1 y={x+(a-2)}^ -(a-2)-4a+5 ---- x=-α+2 放物線の頂点をP(x, y) とする と a=-1 ① 0 /1 2 3 X 放物線y=a(x-p)+q の頂点の座標は (p.g) y=-α²+1 ...... ② 解答 直線 上を 直線 に関 ①から α=-x+2 x これを② に代入して y=(x+2)2+1 -3a=2 a=-2 つなぎの文字αを消去。 したがって、求める軌跡は 放物線 y=(x-2)2+1 INFORMATION 媒介変数表示 図形の方程式がx=f(t), y=g(t) のように,もう1 別の変数 (媒介変数) を使って表されたとき,これ を媒介変数表示という。 y (-1,4) t=-2 (3,4) t=2 1つの実数の値に対して, x=f(t), y=g(t) によ り (x, y) の値が1つに決まり,tが実数の値をとっ て変化すると, 点(x,y) は座標平面上を動き、 図形を 描く。 (0, 1) t=-1 (2,1) t=1 0 (1, 0) 例 x=t+1, y=t2 は放物線y=(x-1) 2 を表す。 実際に点をとると, 右の図のようになる。 1=0 PRACTICE 99 3 αは定数とする。 放物線 y=x+ax+3-α について, αがすべての実数値をとって 変化するとき,頂点の軌跡を求めよ。

解決済み 回答数: 1
数学 高校生

数Ⅱ 軌跡を求める問題です。 写真の解説一行目で、基本例題98ではいつも使っている文字としてP(x,y)としたのですが、PR98でPの座標をP(x,y)としたら間違っていて、x,y以外の文字にする、と書かれていました。 2つの問題の違い、なぜPR98の問題でP(x,y)と置... 続きを読む

基本 例題 98 曲線上の動点に連動する点の軌跡 DACTICE (木) 98 thehet 1 00000 点Qが円x+y=9 上を動くとき, 点A(1,2) とQを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 CHART & SOLUTION 連動して動く点の軌跡 p.158 基本事項 1 つなぎの文字を消去して、 x yだけの関係式を導く ...... 動点Qの座標を (s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件を s, を用いた式で表し, P, Qの関係から, s, tをそれぞれx, yで表す。 これをQの条件式に 代入して,s, tを消去する。 解答 Q(s, t), P(x,y) とする。 x+y=9上の点であるから Pは線分AQ を 2:1 に内分する点であるから s2+t2=9 13 ① (s, t) 2- A 1・2+2t 2+2t Q (1,2) 3 -, y= 2+1 3 -3 0 1・1+2s 1+2s x= 2+1 よって s=3x21.t=3v22 2 ●これを①に代入すると (321)+(3x-2)=9 ゆえに (12/21)+(1/2)=9 よって(x-1)+(y-22-4 =4 ...... ② したがって, 点Pは円 ②上にある。 逆に円 ②上の任意の点は,条件を満たす。 以上から、 求める軌跡は 中心 2) 3'3' 半径20円 P(x,y) つなぎの文字 s, tを消 去。 これによりPの条 件(x, yの方程式)が得 られる。 inf. 上の図から,点Qが 円 x2+y^2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) = 0 上の点であるから f(s, t)=0 ② s, tをそれぞれx, y で表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。 RACTICE 982 放物線y=x2 ① とA(1,2), B(-1, -2), C(4, -1) がある。 点Pが放物線 ①上を動くとき、次の点Q, R の軌跡を求めよ。 (1) 線分APを2:1 に内分する点Q (2) △PBCの重心R

解決済み 回答数: 1
数学 高校生

これの(2)でr=0、1、2で場合分けしてると思うんですけど、なんで場合分けした各値を足しているんですか?普通場合分けの時って、答えはr=0のとき〇〇、4=1のとき〇〇みたいに書くんじゃないんですか?

次の式の展開式における,[]内に指定された項の係数を求めよ。 (1) (x+2y+3z) [x°yz] [武蔵大] (1+x+x2)[x] [愛知学院大 ] P.16 基本事項 指針 二項定理を2回用いる方針でも求められるが,多項定理を利用して求めてみよう。 解答 n! (a+b+c)" の展開式の一般項は p!q!r! a'b'c', p+q+r=n (2)上の一般項において, α=1, b=x, c=x2 とおく。 このとき,指数法則により 1.xq(x2)'=x9+2r である。 g+2r=4となる0以上の整数 (p, g, r) を求める。 (1) (x+2y+3z) の展開式の一般項は 4! 4! pigirix (2y)(3z)=(piair! 20.3)xyz ただしp+q+r=4, p≧0,g,r (a+b+c)の一般項は 4! p!q!r! a'b'c' (p+gtr=4, p≧0, q≥0, r≥0) を これら xyz の項は,p=2, g=1,r=1のときであるから 4! ・2・3=72 2!1!1! 別解 {(x+2y) +3z} の展開式において, zを含む項は C(x+2y) •3z=12(x+2y) z また, (x+2y) の展開式において,xy を含む項は Cx2.2y=6x2y よって, xyz の項の係数は 12×6=72 (2) (1+x+x2)の展開式の一般項は 二項定理を2回用いる方 針。 まず(+32) の展 開式に着目する 二項定理 8! 8! 1.x(x2)= p!g!r! *x9+2+ <(cm)=am p!q!r! ただし p+g+r=8 ①, p≥0, q≥ ≥ dp, g, rは負でない整数。 ****** p=r+4 4-2r≥0 ****** ③ ②①に代入すると p+4-2r+r=8 xの項は, g+2r=4 すなわち g=4-2r のときであり, ① ② から ここで,②g≧0 から rは0以上の整数であるから ②③から r=0 のとき r=1のとき p=5g=2 よって, 求める係数は 8! r=0, 1, 2 p=4,g=4 r=2のとき p=6,g=0 44-27205 r≤2 8! 8! + =70+168+28=266 4!4!0! 5!2!1! 6!0!2! 40!=1

解決済み 回答数: 1