学年

教科

質問の種類

数学 高校生

基本例題115についてです! (1)は、計算してそのまま判別式を使っているのに、(2)では、先に場合分してから判別式を使っています、なぜ解き方が変わるのか教えてほしいです!!

基本(例題 115 常に成り立つ (1) #xxxx な定数kの値の範囲を求めよ。 2 X KF x x + + 3x (2) 任意の実数xに対して, 不等式 ax²-2√3x+α+20 が成り立つような 数αの値の範囲を求めよ。 /p.187 指針 f(x) としたときの, y=f(x) のグラフと関連付けて考えるとよい。 (1) f(x)=x2+(k+3)x-kとすると, すべての実数に対してf(x)>0が成り立つのは、 y=f(x)のグラフが常にx軸より上側 (y>0の部分)に あるときである。 ★ y=f(x) のグラフは下に凸の放物線であるから, グラフが 常にx軸より上側にあるための条件は、x軸と共有点をも たないことである。 よって, f(x) =0の判別式をDとする と, D<0 が条件となる。 基本事項 y=f(x) + (x)の値が常に正 (2)(1) と同様に解くことができるが,単に「不等式」 とあるから, α = 0 の場合(2次 D<0 は kについての不等式になるから,それを解いてんの値の範囲を求める。 不等式でない場合) と α≠0の場合に分けて考える。 a≠0の場合, αの符号によって, グラフが下に凸か上に凸かが変わるから,αにつ いての条件も必要となる。また,不等式の左辺の値は0になってもよいから, グラ [ CHART 不等式が常に成り立つ条件 グラフと関連付けて考える フがx軸に接する場合も条件を満たすことに注意する。 e+m01--1---(em)= (1) f(x)=x2+(k+3)x-k とすると, y=f(x) のグラフ | f(x)のx2の係数は正で は下に凸の放物線である。3000e-m よって、 すべての実数xに対してf(x)>0が成り立つた 止めの条件は,y=f(x) のグラフが常にx軸より上側にあ る,すなわち, y=f(x) のグラフがx軸と共有点をもた 「ないことである。(3)(1-3) ゆえに、2次方程式 f(x)=0の判別式をDとすると, 求 あるから,下に凸。 指針 の方針 不等式が成り立つ条件を y=f(x) のグラフの条件 に言い換えて考える。 止める条件は D<00>(8-) (1-) f(x)>05 D=(k+3)2-4・1・(-k)=k+10k+9D>0 [S]=(k+9)(k+1) > >>0 0> とすると誤り! であるから, D<0 より D<0の“く”は, グラフ よって (k+9)(k+1)<0 -9<k<-1 ode>> a=0のとき,不等式は-2√3x+2≦0 となり、 例えばx=0のとき成り立たない。 十 x軸と共有点をもた ないための条件である。 <a=0 のとき,左辺は 次式でない。

解決済み 回答数: 1
数学 高校生

数C 位置ベクトル 59と60の問題について、考え方が付属の回答とかなり異なっていたためこのような答え方考え方でも大丈夫なのか見て頂きたいです。 よろしくお願い致します。 付属の回答も付けました。

B 59 △ABC の辺BC, CA, AB を 2:1に内分する点をそれぞれ D, E, F とする。 このとき, △ABCと△DEF の重心が一致することを証明せよ。 A 51,52 □ 60 四角形ABCD の辺 AB, BC, CD, DA を 3:2に内分する点をそれぞれ E,F,G, A 51 Hとする。 四角形 EFGH が平行四辺形ならば, 四角形ABCD も平行四辺形であること を証明せよ。 AJ 53 □ 61 △OAB において,辺OA を 3:1に外分する点をC, 辺ABを32に内分する点を D, 線分 BC を 1:kに内分する点をEとする。01 (1) OA = c, OB = とするとき, OE を a, とんを用いて表せ。 (2)3点 0, D, Eが一直線上にあるとき, kの値を求めよ。 62 平行四辺形ABCD において,辺BCの中点をE, 辺 CD を2:1 に内分する点を F, AJ 55,56 線分AE と線分 BF の交点をPとする。 AB = 1, AD = d として,AP を b, dで表せ。 また, BP:PF, APPE を求めよ。 63 △ABC の辺BC, CA, ABの中点をそれぞれL, M, Nとする。 このとき, A 58 AL = MN ならば AB AC であることを証明せよ。 章 ベクトル 59 AB-B このとき AG B2=-1 AX+AB+AC また、EFDの重心をG'とする。 AC-2 とする。 F E ① - D B 6 DIC AF=AB = 7 B AE=AZ = AB 2 =1/2AB+1/A2 = ++38 -AG 1= 2.11 2. NG AF + KE + AB = +16+ + + (++ 2)] = 1/1/13 ( 1² + 2 ) -② AG=Rよって、△ABCとODEFの重心は一致する。 ①② 64 [OA| =3, |OB| =2, ∠AOB=60° の △OAB において,点0から直線ABに垂 線を下ろし、直線ABとの交点をHとする。 OA = 1, OB = とするとき, OH を a, 方で表せ。 60腐=AD= JAC = 2 A HJ D とおく、 E G 四角形 EFGHが平行四辺形ならば の 参考 内積と三角形の面積 教 p.34 65 平面上に3点0(0,0), A(5,12), B(-4, 3)がある。 OA, OB のな 教 p.341 す角を0とするとき, 次の問に答えよ。 (1) cost, sin の値を求めて, △OAB の面積を求めよ。 (2) 原点OA (1, a2), B(b1, b2) を頂点とする △OAB の面積Sは S=1/23 lababy となることを利用して,△OABの面積を求めよ。 66 3点A(4, 3),B(8, 5), C(5, 8) を頂点とする三角形の面積を求めよ。 まとめ 5 HG=EFである。 → HG = AG - AH = (AC+ b) - Ab 5 EF ①より + +2 5 5 AC - AB 2 " → AF - AE =(AB + 26+121-1236 12-16 2/2 + 1/2 J 1 12 - 3 +2126 = = DZ = AZ - AD C-C-B) B = AB よってABCDは平行 2節 ・ベクトルの応用 21 23 このとき、

解決済み 回答数: 1