学年

教科

質問の種類

数学 高校生

(3) x,yをzを用いて表す、というところで、x=z、y=-zになるのがなぜかわかりません。①②の式からどのような変形をして、x,yをそれぞれzを用いて表すのですか?

対して ka +tb>1 が成り立つような実数kの値の範囲を求めよ。 【18 甲南大] 留内積の計算 数式と同じようにできる。 なお |f=da 1soo|2|||=2:1盟 3√3 2 |k+t6|>1 の両辺はともに正であるから,k+16>12 である。 ①から ka+2kta 6+t|b|²>1² ①と同値 よって f2+3√3kt+9k-1>0 2 ②がすべての実数について成り立つための必要十分条件は,tの2次方程式 f2+3√3kt+9k-1=0 の判別式をDとすると ここで D=(3√3k)2-4(9k2-1)=-9k²+4 D<0 L ベクト 求めると、 347 241 ならば、 2 2 D<0 から k<- <k 答 3'3 ■Check■■ 47 (1)2つのベクトル d = (1, 2), = (k, 4) に対して, a 2-a が 平行であるとき,kの値を求めよ。 また, 3d-b と a+ò が垂直であるとき, kの値を求めよ。 (2) ベクトル, が |a+6=11, |-6|=7 を満たすとき, 内積を求 めよ。 (3)空間の2つのベクトル a = (2,3, 1) = (1,2,3)の両方に垂直で大 きさが1のベクトルを求めよ。 348 1 積 OA ように (1) *349 周」 よ *344 (1)||=5,|6|=3,|a-26|=7 を満たすとする。このとき, 内積を求めよ。また, tが実数全体を動くとき, a +坊の最小値と, [類 15 関西学院大 ] そのときのtの値を求めよ。 (2)ベクトル,,こが+6+2=0,|4|=|6|=||=2を満たすとき,内積 の値と,とものなす角を求めよ。 98 ■ XI ベクトル [17 東京都市大] 350 る

解決済み 回答数: 1
数学 高校生

⑴の(iii)の別解なのですが、三次関数とかでもないのにどうして増減表を使って求められるのかわかりません。あと単調増加に極値はあるものなのですか。よろしくお願いします🙇

4 次の問題について,しずかさん、れいさん,ゆうだいさんの3人が議論をしている。 問題ある学校の文化祭では、 縦8mの垂れ幕が垂直な壁にかかっていて, 垂れ幕の下端があ る人の目の高さより2m上方の位置にある。この人が壁から何m離れて見ると, この垂れ幕 の上端と下端を見込む角が最大となるか。 しずか 右図のように、 直線 l を壁として, 点Aを垂れ幕の上 端, 点Bを垂れ幕の下端, 点Dを垂れ幕を見ている人 の目の位置とした。 この垂れ幕の上端と下端を見込む角 ∠ADB の大きさを0とおいて, 0が最大となるときの 点Dの位置を求めればよい。 ・れい 0が最大となるときの点Dの位置を求めたいから,点D から直線 l に垂線 DC を下ろし、 線分 DC の長さを xm とする。そして, 三角比を使って式を作ればよい。 ゆうだい D l A 18m B 12m 角度の問題だから, 2点A, B を通り半直線 CD に接する円をかいて, 円周角の定理あるいは 円周角の定理の逆を使えばよい。 このとき、次の問いに答えよ。 (1) 図とれいさんの考えを使って問題を解くとき、次の小問に答えよ。 (i) ∠ADC= α, ∠BDC = β として, tan0 を tana, tan β を用いて表せ。 (ii) tan 0 を x を用いて表せ。 (iii) 0 が最大となるときの, tan0 と xの値をそれぞれ求めよ。 (2) 図とゆうだいさんの考えを使って問題を解くとき,この人がこの垂れ幕の上端と下端を見込 む角が最大となる位置は, ゆうだいさんのかいた円と半直線 CD との接点になることを示せ。

解決済み 回答数: 1