学年

教科

質問の種類

数学 高校生

次の95の問題でどうやったら青線の様なものを作ろうと考えれるのでしょうか?どなたか解説お願いします🙇‍♂️

94 数列{√3m² + 2n+1 + an} が収束するように定数αの値を定めよ。 また, そのときの数列の極限 値を求めよ。 a≧0 のとき, lim(√/3n² +2n+1+an) ∞ であるから >0のとき 00+00 α = 0 のとき 00+0 {√3m² +2n+1 + an}収束しない。 (発散する) = (0+0) = 0 limb=lim +80 70-+00 (an+bn)-(an-bn) 2 = 2 {lim(an +bn) — lim(an − bn)} 1 = (0-0)=0 2 α < 0 のとき √3m² + 2n+1+an= (√31 -2n+1+an)(√3m² +2n+ an) 分子を有理化する。 したがって,この命題は真である。 3n2+2n+1-an 3n2+2n+1²n² √3m² +2n+1 96 lim (pn²+n+g)a=p+1のとき, 数列{a} (3-4)n²+2n+1 = N /3n² +2n+1- (ア) 0 のとき よって ne lim(√3n²+2n+1+an) = lim (3n+2n+1 28-00 2+2n+1-an = 00 mn²an = lim (pn²+n+q)an·· lim(pn²+n+g)an pn²+n+ 1 1 p+ 4 (3-a)n+2+ n =m 88810 分母分子をnで割る。 1 2 1 3 + (p+1)·· p+1 + -a 根号の中は と p Þ n n² して割る。 (イ) p=0 のとき a² = 0 nの係数3 が lim(n+g)an=1でるから - 0 であれば,○○ 収束するためには α <0 より 3 このとき, ①は 1 2 + n 2 3 lim 2 1 3 + + + √3 2√3 3 n n したがって a=― √3. 極限値 √3 3 95 数列{a}, {6}において,次の命題の真偽をいえ。 たは∞ に発散する。 = limn (1) liman=8, limb =∞ ならば lim (a-b)=0 00 8-1 (2) lim (a+b) = 0, lim (a-bm) = 0 ならば lima = limb=0 81-0 100 (1) an=ne,b=n とすると, lima=∞, limb = であるが 10 lim(an-bn)= lim (n2-n) 28-00 したがって,この命題は偽である。 0 480×18 1 (1-1)= = 10 (an+bn)+(an−bn) (an+bn)-(an-bn) 2 (2) an= ら, lim(an+6m)=0,lim (an-bn) = 0 のとき bn = であるかan, by を an+b, 2 a-b で表す。 (an+bn)+(an-bn) limax= lim 18-00 →0 2 {lim(an+bn) +lim(an-bn)} 2 n2 limnan lim(q) n+g n = lim (n+ = ∞0 1+P n (ア)(イ)より、 求める極は Jp≠0のとp+1 lp=o = 0 の 8 P 97 極限値 1 2n-1 (n+sinn) を求めよ。 1 (nsinn0) n sinn0 + 2n-1 2n-1 2n-1 n 1 1 ここで lim = lim = - 2n-1 1 2 2 n また、すべてのnについて -1 sinne 1 2n0 より 辺々を2-1で割ると 1 sinn0 1 2n-1 2n-1 2n 1 1 ここで, lim- = 0, lim 2n-1 1 -2n-1 =0 であ sinn0 けさるうたの lim

未解決 回答数: 1
数学 高校生

D=0としたときは2つの与式が接する場合だとはわかりますが、これで(0,3)で接するのはなぜ含まれていないのでしょうか

164 重要 104 放物線と円の共有点接点 放物線y=x+αと円x+y=9について、次のものを求めよ。 (1)この放物線と円が接するとき、 定数αの値 (2)異なる4個の交点をもつような定数の値の範囲 指針 放物線と円の共有点についても、これまで学習した方針 接点 共有点実数解 で考えればよい。 この問題では、xを消去して、yの2次方程式(yu)+データの 実数解解を考える。 放物線の頂点はy軸上にあることにも 注意。 (1)放物線と円が接するとは、円と放物線が共通の接線をも つことである。この問題では、右の図のように、2点で接する 場合と1点で接する場合がある。 (2)放物線を上下に動かし、(1)の結果も利用して条件を満たす の値の範囲を見極める。 0001 147 接する 2点です xを消去すると、 (1) y=x'+α から x=y-a 解答 これをx+y=9に代入して よって y²+y-a-9=0 ここで,x2+y=9から (y-a)+y2=9 次方程式が導かれる。 ① x2=9-20 ゆえに -3≤y≤3 [1] 放物線と円が2点 [1] で接する場合 D [2] a=-3 34 2次方程式 ①は②の 3 3 3- 範囲にある重解をもつ。3 よって、 ①の判別式を 13 0 0 AM -3 13 -30 Dとすると D=0 D=12-4-1-(-a-9) =4a+37 37 であるから 4+370 すなわち a=― 4 このとき、①の解はy=- 12となり、②を満たす。 2次方程式 by² +qy+r=00 [2] 放物線と円が1点で接する場合 重解はya- 図から, 点 (0.3), (0, -3) で接する場合で α=±3 以上から、求めるαの値は a1- (2) 放物線と円が4個の共有点をもつのは,右の図から、 頂点の座標に 34 37 ±3 4 放物線の頂点 (0, 4)が,点 (0.2) から点 (0-3) を結ぶ線分上 (端点を除く)にあるときである。 したがって -37 <a<-3 4

未解決 回答数: 1
数学 高校生

〜を引いたところの変形の仕方がわかりません。

基本 例題 20 極限の条件から数列の係数決定など ①①①① (1) 数列 {a} (n=1, 2, 3, ...) が lim (3n-1)α=-6 を満たすとき, ■である。 lim nan 8 7118 [類 千葉工大] (2) lim(√2+an+2-√n²-n) =5であるとき、 定数 αの値を求めよ。 /p.34 基本事項 2 基本 18 41 指針 (1)条件 lim (3n-1)a=-6を活かすために,na"=3n-1)lan× n と変形。 →∞ 13n- 数列{37-1 は収束するから,次の極限値の性質が利用できる。 liman=a, limbn=β⇒limanbn=aβ (a,βは定数) 818 818 n18 (2) まず, 左辺の極限をαで表す。 その際の方針は p.38 基本例題18(3) と同様。 (1) nan=(3n-1)anx n であり 3n-1 lim(3n-1)an=-6, →∞ lim n→∞ 3n-1 n = =lim n1α 1 3- n n limnan=lim(3n-1)an×lim よって n→∞ n→∞ n→∞ 3n-1 13 nan を収束することが わかっている数列の積で 表す。 (税込) 極限値の性質を利用。 =(-6)=-2 3 であるから (2) lim(√2+an+2-√n-n) n→∞ =lim n→∞ (n²+an+2)−(n²−n)) =m=mil √√n²+an+2+√√n²-n ((a+1)n+2 mi =lim →∞ =lim- n18 √netan+2+√n²-n (a+1)+- 2 n 12 n ==a+1 2 (税込) 分母分子に √n²+an+2+√n-n を掛け,分子を有理化。 1分母分子をnで割る。 子をnで割る。 'n> 0 であるから n=√ a 2 n 1+ + + 1 n² よって, 条件から a+1 =5 2 Ma=9 したがって {a.l. αの方程式を解く。

未解決 回答数: 1
数学 高校生

グレーのマーカーの部分を教えてほしいです。

重要 例題 55 関数の作成 図のような1辺の長さが2の正三角形ABC がある。 点PA が頂点Aを出発し,毎秒1の速さで左回りに辺上を1周す るとき,線分 AP を 1辺とする正方形の面積yを,出発後 の時間x (秒) の関数として表し、そのグラフをかけ。 B ただし、点Pが点Aにあるときは y=0 とする。 CHARTS OTTT- はは正方形の面積で APを1辺をするからな か→ x=2,4 (S) 平方の定理から求める。 3章 y=AP2 であり, 条件から,xの変域は 0≤x≤6 [1] x=0, x=6 のとき よって [2]0<x≦2 のとき y=x2 点Pが点Aにあるから 点Pは辺AB上にあって y=0 AP=x P x-4 [3] 2<x≦4のとき 点Pは辺BC上にある。 辺BCの中点をMとすると, BCAM であり よって, 2<x<3のとき BM=1 B-PM x-2 ると PM=1-(x-2)=3-x 3<x≦4のとき ここで AM=√3 PM=(x-2)-1=x-3 ミルガウス 7 関数とグラフ ゆえに, AP2=PM2+AM2 から y=(x-3)2+311] [4] 4<x<6 のとき 点Pは辺 CA 上にあり, PC=x-4, AP2=(AC-PC) から y=(x-6)² [1]~[4] から 0≦x≦2 のとき y=x2 2<x≦4 のとき y=(x-3)2 +3 YA 4 3 4<x≦6 のとき y=(x-6)2 グラフは右の図の実線部分である。 234 6 x ◆結局 2<x≦4 のとき PM=|x-3| 頂点(3,3), 軸 x=3 の放物線 {2-(x-4)}2=(6-x) 2 =(x-6)2 頂点 (6,0),軸x=6 の放物線 x=0, y=0 は y=x2 に, x=6, y=0 は y=(x-6)2 に含められる。 ④ 88-237 PRACTICE・・・ 55 1辺の長さが1の正方形ABCD がある。 点Pが頂点Aを出発し, 毎秒1の速さでA→B→C→D→Aの順に辺上を1周するとき, 線分APを1辺とす る正方形の面積yを,出発後の時間x (秒) の関数で表し,そのグラフをかけ。 ただし、点Pが点Aにあるときは y=0 とする。 []

未解決 回答数: 1