学年

教科

質問の種類

数学 高校生

赤のところが分かりません。 よろしくお願いします

例題 35 2次方程式の整数解 次の2次方程式が異なる2つの整数解をもつように、 定数αの値を定めよ。 (1) x²ax+α²-2a=0 (2) - ax-a+3=0 思考プロセス (1) 候補を絞り込む 条件をゆるくして考える。 異なる2つの整数解 少なくとも異なる2つの実数解 判別式 D > 0 より 条件をゆるくして考えたから,解が実際に家になるか確かめる。 の範囲を絞り込む (2) (1) のように, D> 0 からaの範囲が絞り込めない。 未知のものを文字でおく 整数解をα, β とおく 解と係数の関係 [a+B=a laβ=-a+3 Action>> 2次方程式の整数解は, 判別式, 解と係数の関係を使え 解 (1) 2次方程式の判別式をDとすると D=(-α)2-4(q²-2a) = -3a²+8a 方程式が異なる2つの実数解をもつから α消去 これを解くと x = いから、不適。 (イ) α = 2 のとき, 方程式は 3 よって, 3a (a-1/28) <0より 0<a< ここで、この方程式の2つの整数解を α, β とすると, 解と 係数の関係により, α+β=α であるから,α も整数である。 ゆえに, ① より a=1,2 (ア) α=1のとき, 方程式は 1±√5 2 a+ß = a, aß = = a +³2? 方程式 式 D>0 18+) +場合である。) αを消去して aß+a+k=3 よって (+1)(+1)=4 α, βは整数より, α+1, β+1 も整数であり, α + 1 < β+1 であるから =0 JR SE (a+1,β+1)=(-4,-1),(1,4 よって (a, B)= (-5, -2), (0, 3) したがって 求める α の値は a = -7, 3 友 整数解は実数解の特別な x-x-1=0a+og となり,整数解をもたな解の公式による x2-2x=0a+⑤.① よって, x=0, 2 となり、 異なる2つの整数解をもつ。 (ア), (イ) より 求めるαの値は a = 2 (2) 2次方程式の2つの整数解をα, β (α <β) とすると, 解と係数の関係により 2次方程式 ax2+bx+c=0の2つ の解をα, βとすると b a' |a+B== ₁ aß = SOSIDH 実数解をもつ条件より |D=(-a)²-4(-a+3) >0 a<-6, 2 <a であるが、これを満たす整 数αは無数にあるため、 aの値は定まらない。 E) 40 <a=a+B 練習 35 次の2次方程式が異なる2つの整数解をもつように、 定数 α の値を定めよ。 (1) x- (a+3)x+α²-1 = 0 (2) x-2ax+α - 2 = 0 p.68 問題

回答募集中 回答数: 0