学年

教科

質問の種類

数学 高校生

帝京大学の数学の過去問です。 解説と答えをお願いしたいです。

[3] 下図のような三角形ABC と, その上を移動する3点P. Q. R がある。 点Pは点Aから点Bまで毎秒1の速さで移動する。点Qは点Bから点Cまで 毎秒2の速さで移動する。点Rは、点CからAまで毎秒 1/30 3点P. Q. R が同時に移動し始める。 (1) 三角形ABCの面積はアイウである。 (2) 移動し始めて1秒後。 PQ の長さは・ キ コサ 10. クケ エオ カ 三角形 ARP の面積は (3) 移動し始めて3秒後、三角形 PQR の面積は 三角形BPQの面積は チッ ソタ の速さで移動する。 ナニ スセ テト である。 である。 (4) (1) 変量xの標準偏差が4. 変量yの標準偏差が2. 変量xと変量yの共分散が5と するとxとyの相関係数は0. アイウである。 (2) 以下は生徒10人を対象に行ったテストの得点である。 テストは10点満点である。 生徒 A B 得点 3 D E F G H I J 6 9 2 9 9 7 6 1 このデータで採点ミスが見つかった。 生徒Gの正しい得点は、 4点であった。 この修正を行うと、平均値は修正前から エオ点減少する。 更に、 生徒Gに加えて、 生徒Eの得点にも誤りがあり、 生徒Eの正しい得点は7点 であった。 生徒Gと生徒Eの得点の修正を行うと、データの分散は生徒Gと生徒E の得点の修正前とくらべてカ ただし カには①~②からいずれかを選び なさい。 ⑩ 増加する ⑩ 減少する ② 変わらない 生徒Gと生徒Eの得点を修正した後の生徒達の得点を変量xとする。 更に新し い変量yをy=2(xーキク〉とする。 変量yの平均値は0. 分散は ケコ サシとなる。

回答募集中 回答数: 0
数学 高校生

どうして(I)でn=2の時の分も考えるんですか?

例題 B1.63 n=k-1, k を仮定する数学的帰納法 x=t+/1/2 とし, P.=f+1/12 t" のn次の多項式で表されることを示せ 考え方 解答 とおく (n=1,2, .・・・・・). このとき,Pnはx 自然数nに関する証明については,数学的帰納法を用いる. まずはオーソドックスに 考えてみよう. (証明) (I) n=1のとき,P,=t+==xより成り立つ. (Ⅲ)n=kのとき,P.=t+1=(2 n=k+1 のとき, Ph+1 = th+1+ * + ² + = ( ₁² + + ) ( ₁ + — ) - (^ ^ ₁ + 7 ² ₁ ) =(xのk次の多項式) と仮定すると, **** =xP-P-1 ここで,Pk= (xのk次の多項式)と仮定しているから,xPhはxの(k+1) 次の多項式で ある.しかし,P-1については、何次式なのか, xの多項式なのかもわからない つまり、 Pだけではなく, P-1 の次数についても仮定が必要になる.また, (II)で,n=k-1,k とすると,n=1,2,….…...であるから.k-1≧1 より k≧2 でなければならない. 1 (I)n=1のとき,P=t+==xより成り立つ 2 n=2のとき,P=f+1/2=(t+12=x-2 より題意は成り立つ。 (II)n=k-1,k(k≧2) について,題意が成り立つと仮定する. JP-1 はxの(k-1) 次の多項式 Pkはxの次の多項式 すなわち, 1 P₁+₁=²^¹ + ₁² = (1² + 7 ) ( ² + 7 ) ( ^¹ + ²) Pk+1=th+1+ = - tk+1 rick 16=xPk-PR-1 ここで,xPk は x×(xのk次の多項式)より x (k+1) 次の多項式となり, P-1 はxの(k-1) 次の多項式であるから, Pk+1 は x の (k +1) 次の 多項式となる で表されると仮定すると、 -2 と条件 よって,n=k+1のときも題意は成り立つ Pr (I)(II)より,すべての自然数nについて題意は成り 立つ. P-1 は x (k-1) 次の多項 式より, =(x (k+1) 次の多項式) (x-1)次の多項式) !!! 注〉 (I) で P1がxの1次の多項式であることだけを示し, (II)の一般的な方法で, P2がxの 2次の多項式であることを示そうとすると, Po, P, が必要となり困る. (Po は定義さ れていない。)よって,(I)でP2 も調べておく必要がある。 の3項は なお、下の練習B1.63 は, フィボナッチ数列の一般項に関する問題である. (p. B1-84 参照)

回答募集中 回答数: 0
数学 高校生

5〜7行目において、変数をx、yに置き換えたときなぜこの値になる? X=x+y、Y=x-yを代入していないのはなぜ? 教えてください。

す 3 121 条件を満たす点の存在範囲 例題 「座標平面上で,点P(x, y) がx2+y2≦2 を満たしながら動くとき, 次の点が動く領域を図示せよ. (1) Q(x+y,x-y) (1) x+y=X, x-y=Y とおき, x, y を X,Yで表すことを考える (2) x+y=X, xy=yとおき, (1)と同様に考えればよいが,そのとき, (1) と異なり、 X,Yが実数であっても x, y は実数とは限らないので, x,yが実数として存在 するための条件が必要になる. SJCSS A (1) x+y=X,x-y=y とおくと, 65UX330 X+Y_X-YP >>7°N 1² kurd/dsxx v そうな x=-2,y= x2+y2≦2 より, 2 X+ \2 (X + Y)² + ( X = X ) ² = ² ≤2 (2) R(x+y, xy) したがって, X2+Y2≦4 変数をx, yにおき換えて、 x² + y² ≤4 Mat よって, 点Qが動く領域は右 H FCO 23 の図の斜線部分で, 境界線を含む. (2) x+y=X, xy = Y とおくと, x,yは2次方程式 f-Xt+y=0 ・・・・・① の2つの解である。 したがって、 ①の判別式をDとすると,x,yが実数 であるためには, D≧0 でないといけない. y=x²-1 ......3 HIMA つまり、 =Y²=X²-1 変数をx, yにおき換えて, 160913 3 軌跡と領域 221 **** 2 SELY TO よって②③より,点Rが 動く領域は右の図の斜線部分で, [S 境界線を含む. 20 x,yをX,Yで表す. yI (2x+y=4x,yを代入する. X, Y が実数のとき, x, も実数になる. Q (X,Y) が動く領域 x²-(a+B)x+aß=0 X,Yが実数でも,x, yは①の解なので実数 とは限らないことに注 つまり, D=X2-4Y≧0より, YS-X意する。X=0, Y=1 変数をx,yにおき換えて、 は下の③を満たすが, ①より,t=±えとなり, 点Pは存在しない. y≤1x² また、与えられた条件より, したがって, X²-2X ≤2 2x1 図は xy平面上にかく. C には α,βを解とする2次 方程式 (x+y)²-2xy≤230 2=1212-1 X, Yの式で表す. 2 x 0-0 280 座標平面上で,点P(x, y) |x|≦1,|y|≦1 を満たしながら動くとき,次の 点が動く領域を図示せよ. CS AJPRE (1) Q(r+11 Son (2) R(x+y, xy) →p.22745 3 図形と方程式 1

回答募集中 回答数: 0