学年

教科

質問の種類

数学 高校生

これの答えを教えてください! 解答がなくて答え合わせができず、困ってます😭

196-197 ません) らない) つくるこ をすべき とつくる 続けら -199 だ) た) ―には の意 Knot 0 B30 XOT XEXERCISES ES 不定詞① (名詞用法) ⑤ [ ]内の意味に合うように、不定詞を使って英文を完成させなさい。 (1) Ann wants to know a teacher. [教師になる方法] (2) I know (3) Sam didn't know (4) I haven't decided that book. [どこで買えばいいか] [何を言えばいいのか lood to of DoverIO for Canada yet. [いつ出発すべきか] HOUSTI RISTONSSON 0 ⑥6 日本語に合うように( (1) 大切なのは、だれにもうそをつかないことだ。 The important thing (to /is/lie / not) to anyone. )内の語句を並べかえ, 全文を書きなさい。 16 SORTIR D aslood to fol a basi PASA d'evil of a to guidool a'ade z (2) 彼女があなたに怒っているのは当然だ。 It is (for / natural / you / angry with / be / to / her). om gloro base on avail I as 宝不さ玉会 3 om eqlar barst on (3) 妹が夜ふかしするのはめずらしいと思う。 (2) I think (unusual/my sister / stay / to / it's / for) upl late. 100 Lat of yu tead sillal terW HIS GJELDED MIROS PROSVITU TOGE (4) 私の長所は,決して落ちこみすぎないことだ。1000 ( My good point (be / to / depressed / is / too / never) of a bit uovo woH C (1) CONST 8 7 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 CD (1) 状況 医師から食生活を改めるよう言われたので、私は…。 I (not/ eating / eat / decided / a lot of /to/ sweets). 07-11-not eating/cated 13/2014 bro bothate 7 of advice. BORARSTO ENNUJAS LEBET CAS (2) 状況 ルーシーは最近悩みがあり、だれかに相談したいのですが・・・。 he of htpal chu Lucy doesn't (ask/know/who / for /to/ bawala a no ixats qode of CUS LOT- (3) 状況 最近, 地震が多いことを受け, ホームルームで先生がひと言。 We had better (what / case/ do / consider / to / of / in / doing) emergency. JON TOTO + ton en 08) a 16 red blor. I 8 [ ]内の語を参考にして~…に自由に語句を入れ, オリジナルの英文をつくりなさい。 れ、オリジナ 28-1-571-7 CD (1) 私が~することは簡単だ。 [easy / to ] (2)~(人)は私に….する方法を教えてくれた。[teach] 51

回答募集中 回答数: 0
数学 高校生

この 10c4という計算は10c6にはならないんですか?ならないとしたらなぜでしょう。nCr🟰nCn-rと私は習いました。

でで ご購 白チ・ ■基 基本 解説 に な生 コード! 例量 シ [追加] スモ 1 344 例題 準 34 余事象を利用した確率 (順列・組合せ利用) い確率を求めよ。 (2) 赤球4個と白球6個が入っている袋から同時に4個の球を取り出すと (1) 5枚のカード a, b, c, d, e を横1列に並べるとき, baの隣になら 取り出した4個のうち少なくとも2個が赤球である確率を求めよ。 CHART GUIDE 余事象の利用 〜でない, 少なくとも~ には余事象の近道あり 求めるのは, (1) baの隣になる場合 (2) 赤球が 0 個または1個の場合 確率である。 P(A)=1-P(A)=1- 5! 通り (1) 5枚のカードの並べ方は 「bがaの隣にならない」という事象は「bがaの隣になる」 という事象 Aの余事象A である。 aとbのカードをひとまとめにして, 1枚のカードと考える 4通り と、これと残りの3枚との合計4枚の並べ方は 4! 通り そのどの場合に対しても, ひとまとめにした2枚のカードの 並べ方は 2! 通り よって 求める確率は 4!×2! 5! 2・1 5 ·=1-- 本例題10.16.30 313> 5 =210(通り) (2) 球の取り出し方の総数は 10C4= 「少なくとも2個が赤球」 という事象は 球が0個または 1個」という事象 Aの余事象A である。 [1] 白球を4個取り出す場合 6C4=6C2=15 (通り) [2] 赤球を1個,白球を3個取り出す場合 4 C1 X6C3 = 80 (通り) [1],[2] は互いに排反であるから、赤球が0個または1個で ある場合の数は 15+80=95 (通り) 10・9・8・7 4・3・2・1 よって 求める確率は P(A)=1-P(A)=1- 95 23 210 42 の余事象の 0 000 2! 通り 残り3枚 ◆余事象の確率 少なくとも2個赤 | : 4 白 : 0 赤: 3, 白 : 1 赤 2, 白:2 赤: 1:3 赤: 0, 白 : 4 ◆ 余事象の確率 基 本 例題 35 CHART & GUIDE 100 枚の札 札を引く」 ANBは 互いに 余事象 1から100 が3の倍数 100 枚の 象をA, と 求め ここで, A={ ANE TRAINING 34③ (1) A,B,C,D,E,Fの6人が輪の形に並ぶとき, AとBが隣り合わない確率を求 め。 [類 神奈川大 ] (2) 赤玉5個、白玉4個が入っている袋から, 4個の玉を同時に取り出すとき、取り出 した玉の色が2種類である確率を求めよ。 である: したが Le 確率 PC [1] [2] [1] は 分がな したた ANE TRA 「た 1 あ

回答募集中 回答数: 0
数学 高校生

赤い丸で囲んであるところが全くわからないです…💦

重要 例題 232 媒介変数表示の曲線と面積 (2) 媒介変数tによって, x=2cost-cos2t, y=2sint-sin2t (0≦t≦) と表される右図の曲線と, x軸で囲まれた図形の面積Sを求めよ。 PALER CH CHART 解答 図から, 0≦t≦↑ では常に y≥0. また OLUTION 基本例題228 では,t の変化に伴ってxは常に増加 したが, この問題ではxの変化が単調でないとこ ろがある。 右の図のように、 t=0 のときの点をA, x座標が 最大となる点をB (t=to でx座標が最大になると する), t=π のときの点をCとする。 この問題では点Bを境目としてxが増加から減少 に変わり, x軸方向について見たときに曲線が往 復する区間がある。 したがって, 曲線 AB をy, 曲線 BC を とすると, 求める面積Sは CONTO S=Synx Synx と表される。・・・・・ 2008 y=2sint-sin2t=2sint-2sintcostanial =2sint(1-cost) よって, y=0 とすると 0≦t≦x から t=0, π 次に, x = 2cost-cos 2t から dx dt -=-2sint+2sin 2t =-2sint+2(2sintcost) =2sint(2cost-1) 0 <t<π において 1 FAVO dx - = 0 とすると, sint> 0 から dt 「 cost=- ゆえに π t=₁ よって、xの値の増減は右の表のようになる。 sint = 0 または cost=1+sajest 15 0<a Fachs C In t dx dt x よって,xの値の増減を調べ, x座標が最大となるときのtの値を求めてSの式 を立てる。また,定積分の計算は,置換積分法によりxの積分からの積分に直 して計算するとよい。 -3 t= を求めている。 y2 0 0 1 0000 y₁ 13 S 曲線が往復 している区間 (小 ... yA + 0 Hinf. 0≦t≦π のとき sint≧0,cost≦1 から y=2sint(1-cost) 20 としても,y≧0 がわかる。 0 A 1 t=0+ π 3 0 3 2 基本 228 *** •B TI [] t=to π 0 -3 ゆえに, osts におけるy をyi, sts におけるyを X=- 20030-caso =2-1 [ ] とすると, 求める面積Sは s=S²¸y=dx−Svidx ここで、0≦ osts において、 x=1のとき t=0, であるから また、において x=2のとき 一 であるから よって 3 x= のとき S² vidx=Sy dx ここで dt dt x=3のときt=" S²¸yzdx=Syddt t=7 s-Syndx-S² vndx-Syddi - Sydd dt dx -Sidedt + Sy dr dt-Sydx dt =S(2sint-sin2t)(−2sint+2sin2t)dt = S-2s -2sin22t+6sin2tsint-4sin't)dt =2f (sin2t-3sin2tsint+2sint)dt 4t sin 2t dt-S¹-cost dt-t-sin 4- ・dt=- 2 (3sin2tsintdt-3" 2 sint cost-sintdt EES S2 sintdt=2^1-69824dt=[1-1/2 sin24] 月 sin'tdt=2f"1-cos2tat=| =1 S= = -65 sint cost dt = 65" sinºt(sint)dt = 6-sin't] =0 =6 Y -3 注意 と は,xの式と しては異なるから |Sydx-vidx=S_¸ydx としてはいけない。 一方の式としては同じ y=2sint-sin2t) で表さ れる。 355 Sf(x) dx = -f(x) dx Sf(x) dx + f(x) dx -Sof(x)dx ← S₁ƒ (x) dx = -S₁ƒ (x) dx 1-cos 20 2 inf. 積和の公式から 3sin2tsintdt sin'0= ---√ (cos (cos 3t-cost)dt -sin 3t- =0 したがってS203 としてもよい。 [inf. この例題の曲線は, カージオイドの一部分である(p.103 補足参照)。 Tri y PRACTICE・・・・ 232 ④ 媒介変数tによって, x=2t+t, y=t+212 (-2≦t≦0) と表される曲線と, y軸で 囲まれた図形の面積Sを求めよ。 ds de 8章 25 20

回答募集中 回答数: 0
数学 高校生

これのトレーニング両方わかんなあいです!

21:39 のさいころを同時に投げると 同じ目が出ない Efte 偶数の目が少なくとも1つ CHART GUIDE P(A)-1-P(A)を利用する。 余事象の確率 「同じ目が出ない」という事は、同じという。 「偶数の目が少なくとも1つ出る」というW 事象の余事象。 2個のさいころの目の出方は 「同じ目が出ない」という事象は、「同じ目が出る」という 事象Aの余事象 A である。 同じ目が出るのは 6通り よって、求める確率は all P(A)=1-P(A)= (2) 「偶数の目が少なくとも1つ出る」 という事は、「2個と も奇数の目が出る」という事象 Aの余事象A である。 2個とも奇数の目が出るのは よって、求める確率は P(A)=1-P(A)=1-3-2 「少なくとも」が出てきたら、余事象の確率を意識 B : 偶個) C : 個奇 COD my Lecture 上の例題 (2) では,右のように3つの互い に排反な事象 B, C, D を定め,加法定 理でP (BUCUD) を求めてもよい。し かし、上の解答のように, 余事象の確率 を考えた方が計算がらくである。 確率の問題では, 「少なくとも」 というキーワードが出てきたら、余事象の確率を考えるとよい。 少なくとも D : 奇個 A: 奇奇・・・ 2つとも奇数 1つは偶数 624 (2 33 13個のさいころを同時に投げるとき、 次の確率を求めよ。 TRAINING (2) 3つの目の和が4にはならない確率 (1) 奇数の目が少なくとも1つ出る確率

回答募集中 回答数: 0