数学 高校生 2日前 途中式込で教えてください🙇🏼♀️ (2) a(x-2)(x+3)+b(x-1)+c=2x2-3x+5 [ シグマ・ゲイン] (3) x²-3x+2=x1+1 a b [エクセディ] IC -2 (4) x2-1 a x- x+1 回答募集中 回答数: 0
数学 高校生 2日前 至急お願いします🙏 下の写真の(1)~(3)について、解き方がよく分からないので教えて下さると嬉しいです!! お願いします🙇♀️ 51辺の長さが2の正四面体 OABC の辺 AB上に点Pをとる。 点Pが点A, 点Bを除く辺AB上を動くとき, 線分AP の長さをαとする。 (1) αのとりうる値の範囲はア <a<イである。 α を用いて, CP2= [ウ と表される。 2) OCP において底辺をOC とするとき, 高さんは,h=エであるので, △OCPの面積Sは, S=オである。 (2) 並合せ ★★ (武庫川女子大) 3) (2)より, Sは α = カ のときに最小値キをとる。 回答募集中 回答数: 0
数学 高校生 3日前 二次関数の最大値を求める問題です 答えを見てもわからないので、教えてもらえると嬉しいです! 3 ・教 p.94 応用 20161αは定数とする。 関数 y=2x²-4ax-a (0≦x≦2) の最大値を求めよ。 回答募集中 回答数: 0
数学 高校生 3日前 採点と空白の問題の解説をお願いしたいです。 よろしくお願いしますm(_ _)m 2x 19 8 次の関数の最大値と最小値を求めよ。 (1) y=5sinx +12cosx Fase 144 5169-13 最大13 最小 13 0≦x<2のとき、 次の方程式を解け。 (1) V3sinx+cosr=1 12. in (x^). 24h (2) y=sinx-3cosx Texa - Foo What too fast [to (2) sinx+V3cosx+3=0 | 5 Tit 2 aint cos 1/2 10 和と積の公式を用いて, 次の値を求めよ。 (1) sin 75°cos 15° (amgor. =(1)当 20 (3) cos 105° sin 75° F3 26m (+) GM (+1) 3 2 Te a 3 3 (2) cos75°cos 15° +(90-cos 60°) +601 (4) sin 105° + sin 15° Za (cos (20° cos 90°) 1/12(11/20) (5) sin 75°- sin 15° 2004 90° x 914 600 2 4 (6) cos 105°-cos 15° 2 Gih (20° 900 Ginh. 2 2 2x x 2 12x 2 x 回答募集中 回答数: 0
数学 高校生 3日前 採点と間違った問題の解説をお願いしたいです。 よろしくお願いします。m(_ _)m 和7年度 数子 2単位 1 加法定理を用いて,次の値を求めよ。 (1) sin 105° aim(45+60= 左 44 (3) sin 15° 4in (4530) Ext =16-12 4 (2) cos 105° cos (ase 60°)-[2-16 (4) cos 15° 4 cos (46°-30°) = 6152 (5) sin 75° Gin (450+30) = 86482 (6) cos 75° cos (45° 30°) = 16-12 (7) tan 105° tan (iso+60)= (9) tan 75° Tan (49°43007 (レオ)() (8) tan 15° tan (45-30°) (10) tan 75° (3-3)2 (るな)(3F) 2 半角の公式を用いて, 次の値を求めよ。 (1) sin 22.5° (2) cos 22.5° 552 450 52 ・(-costs =2 (3) tan 22.5° tanzas 4 tan 22.5 (2F) 2 2F(2) 4-4F12. 4-2 tanzz.s tan22513-2F 963 9:3 24/2005 22.5-242 4 回答募集中 回答数: 0
数学 高校生 3日前 問2のq’の式の分母に2かけてるのはどうしてですか この日, もつことになる。 がαより引き継がれやすいと, 世代を重ねるごとに変動をしながら, Aの遺伝子頻 度が大きくなる傾向になると考えられる。 153 問1 BB の個体: 36% Bbの個体: 48% bbの個体: 16% 問2 0.29 問3 41個体 Key Point 自然選択が働くと、特定の遺伝子型の個体が取り除かれ,ハーディー・ワインベルグの法 則は成り立たない。 解説 問1 遺伝子Bの遺伝子頻度をか. 遺伝子の頻度をg (p+g=1) とすると,この集団に おける遺伝子型の頻度は次の式で求められる。な (pB+qb)²= p²BB+2pqBb+q²bb とは いる。 よって, 遺伝子型 BB の個体の割合は2=0.62=0.36, 遺伝子型 Bb の個体の割合は2pg=2×0.6×0.4=0.48, 遺伝子型 66 の個体の割合は4=0.4=0.16 となる。 問2bbの個体がすべて取り除かれた後の, 対立遺伝子の遺伝子頻度を′とすると. BBの個体の割合が 0.36, Bb の個体の割合が 0.48 であったので(sp+Mo 0.48 g′'= (0.36 +0.48) ×2 0.48 0.84×2 =0.285≒0.29 となる。 変化後の遺伝子頻度で自由交配が行われれば, ハーディー・ワインベルグの法則から次 世代における遺伝子頻度は変わらないので,bの遺伝子頻度は0.29である。 問3 対立遺伝子の遺伝子頻度が0.29 なので, bb が取り除かれた後の対立遺伝子Bの 遺伝子頻度かは、 al p'=1-0.29=0.71 st Bb の個体の割合は2pg′=2×0.71×0.29=0.4118 ≒ 0.41 総個体数が100個体であれば,B6の個体数は100×0.41=41) 回答募集中 回答数: 0
数学 高校生 4日前 (2)についてなのですが四角で囲った部分のように計算を行い、最小値が1/2となってしまいました。なぜこの方法では正しい答えが出ないのか教えて頂きたいです。よろしくお願いいたします。 6.355 5/27 6/17 を0以上1以下の実数とする. このとき,以下の問に答えよ. ただし, a, b, c, dが実数のとき, max (a, b) は a, b のうちの最大の数を表し, max (a,b,c,d)は a, badのうちの最大の数を表す。 (1) max (xy, 1-xy) の最小値を求めよ. (2) max (xy, 1-xy, x, y) の最小値を求めよ. 回答募集中 回答数: 0
数学 高校生 15日前 大問2は一問しかないから全部大問1と3の(1)以外の解き方が教科書見ても やり方がイマイチ分からなかったです。🥺 誰でもいいので教えてくれませんか⁇🙇♀️ 課題だから知りたいんですよ、解き方を 誰か〜〜〜〜〜〜〜〜〜お願いです🤲 3 - 2 22 )について、 【1】 A= 1 2 (1) 固有値を求めなさい。 (2) 固有ベクトルを求めなさい。 (3)行列 A を対角化しなさい。 【2】B= 【3】C= 次のものをそれぞれ求めなさい。 3 - 1 3 00 - 6 -3 について、固有値、固有ベクトルを求めな 4 4 2 について、次のものをそれぞれ求めなさい。 2 1 [日] につい 5 8 (1) 固有値を求めなさい。 (2) 固有ベクトルを求めなさい。 (3) 行列 C を対角化しなさい。 (4)cm を求めなさい。 回答募集中 回答数: 0
数学 高校生 16日前 数Bで質問です。 各写真のオレンジマーカー部分で 1枚目は>0、5から>0なのに 2枚目は<0、5から>0なのは どうしてでしょうか? 教えてください。お願いします🤲 17 正規分布 N (10, 52) に従う確率変数 X について,P(X≦a) = 0.9938 となるような定数 の値を求めよ。 17 X が正規分布 N(10, 52) に従うとき, Z= X-10は標準正規分布 N(0,1)に従うから P(X ≤a) = P(Z≤ -10) ここで, 0.99380.5から100で P(Z≤ -10)=0.5+ (a=10) よって 0.5+ (-10) =0.9938 a-10 ゆえに =0.4938 5 正規分布表から a-10 5 =2.50 したがって a=22.5 回答募集中 回答数: 0
数学 高校生 17日前 全然わかりません。 どなたか教えてください。 ここまでは頑張りました。 61(1)周期:πなので LTC =よりa=1 a ア f(日)= sin(a+b)+c 27 M ~ どれだけ I=周期 平行移動したか ←本来こうやった bとしてあり得る最小のものは sin(θ)=-sinθより② f(日)=-sin(-ag+d) =-sin(-10+d) =-sin1-θ+d) 点 イ:③ (2)周期 = πL +4a= 2, a よりの上 Kelo TC TL TC + 636 回答募集中 回答数: 0