学年

教科

質問の種類

数学 高校生

数Ⅲ 基精 40(2) Y=f(x)とY=f^−1(x)の凹凸が異なりかつY=Xに関して対象というのはどのように判断すれば良いのでしょうか??🙇🏻‍♀️

第3章 いろいろな関数 問 68 40 逆関数 f(x)=var-2-1 (a>0x とするとき, 次の問いに答えよ、 f(x)の逆関数y=f(x) を求めよ. ② 曲線 C:y=f(x) と曲線 C2y=f(x) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C,Cの交点の座標の差が2であるとき, αの値を求めよ。 講 <逆関数の求め方〉 y=f(x)の逆関数を求めるには,この式を x=(yの式)と変形し, xとy を入れかんよい 〈逆関数のもつ性質〉 I. もとの関数と逆関数で,定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは, 直線 y=x に関して対称になる <逆関数のもつ性質〉を上手に活用することが必要です. この基礎問では,I 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき ポイントになります。 リーェに関して で交わる」こと fy-f(x) E よって、 2次 すなわち、エ 範囲で異な 求める。 そこで、 この2次 ( I A a>0. : a (3) (2) の B- a (別解) (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+1≧0 より 値域は y≧-1 ここで,両辺を2乗して, ポ 1大切!! ax-2=(y+1)2 .. X=- x = 1 (y+1)²+²² (y≥ −1) 定義域と値域は入れ かわる 演習問 a a £ɔT, ƒ¯¹(x)=±±²(x+1)²+²±²² (x≥−1) 2 a 注 「定義域を求めよ」とはかいていないので,「r≧-1」は不要と思う 人もいるかもしれませんが,xの値に対して」を決める規則が関数で すから、この範囲,すなわち, 定義域が 「すべての実数」でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません。 (2)y=f(x)とy=f(x) のグラフは,凹凸が異なり,かつ,直線

回答募集中 回答数: 0
数学 高校生

赤で線を引いた所で、(n+1)(n+2)分のan+1がbn+1になる理由が分からないので教えてください🙇‍♀️

近畿大 ] 基本34 anの える。 例題 基本 la=2, an+1= an (1)n(n+1) ((2) an 39 an+1=f(n) an+g型の漸化式 n an+1によって定められる数列{a} がある。 -=bn とおくとき, bn+1 を bn とnの式で表せ。 をnの式で表せ。 4 an (1) bn= n(n+1)' bn+1= an+1 指針 (n+1) (n+2) で割る。 (n+1)(n+2) を利用するため, 漸化式の両辺を ・基本25 (2) (1) から bn+1=bn+f(n) [階差数列の形]。 まず, 数列{6} の一般項を求める。 n+2 (1) an+1= n 解答 an+1の両辺を (n+1) (n+2) で割ると an+1 (n+1)(n+2) 1 an n(n+1) + (n+1)(n+2) 2+1) (n+2)...(*) an -=bn とおくと n(n+1) bn+1=6n+ 1 (n+1)(n+2) (2)61= 1.2 bn=b₁+ =1+ a1 =1である。 (1) から, n≧2のとき 1 n-1 =1+ ◄an=n(n+1)bn, an+1=(n+1)(n+2)6n+1 を漸化式に代入してもよ い。 bn+1-bn 1 (n+1)(n+2) ◆部分分数に分解して,差 の形を作る。 1 k+2 n n+1 途中が消えて、最初と最 後だけが残る。 3n+1 k=1(k+1)(+2) =1+(1/2)+(赤) =1+ 3 1 = 2 n+1 2 n+12(n+1) ① b=1であるから, ① は n=1のときも成り立つ。よって an=n(n+1)bn=n(n+1)・ 3n+1 n(3n+1) = 2(n+1) 2 ①初項は特別扱い 上の例題で,おき換えの式が与えられていない場合の対処法 n+2 検討漸化式のαに が掛けられているから, 漸化式の両辺に×(nの式)をして n 【PLUS ONE f(n+1)an+1=f(n)an+g(n) [階差数列の形] に変形することを目指す。 (n+1)の式n の式 まず,漸化式の右辺にはnn+2があるが, 大きい方のn+2は左辺にあった方がよい あろうと考え、両辺を (n+2) で割ると D an+1 an A n+2 n n+2 2つの項 のうち, 左側の分母をf(n+1), 右側の分母をf(n) の形にするために, A 両辺を更に(n+1)で割ると、解答の(*) の式が導かれてうまくいく。

回答募集中 回答数: 0