学年

教科

質問の種類

数学 高校生

数I文字係数の方程式の問題です。 (3)の解説を見たのですが、理解ができなかったので、解説をお願いしたいです。

例題 次のxについての方程式を解け。 (1) x2+(a−2)x-2a=0 (2) ax²-2x-a=0 (3) ax-2ax+a=0 思考プロセス (2),(3)問題文では,単に「方程式」 となっており,2次, 1次方程式とは限らない。 場合に分ける (x2の係数)=0のとき (x2の係数) ≠0のとき 1次方程式を解く 2次方程式を解く (例題82参照) Action » 最高次の係数が文字のときは, 0かどうかで場合分けせよ (1) x2+(a−2)x-2a=0 より (x-2)(x+a)= 0 x=2, -a よって 10 (2)(ア)a=0のとき,この方程式は これを解くと x = 0 (イ) α = 0 のとき, 解の公式により -(-1) ± √(-1)²-a (-a) x= AN (ア), (イ)より a ² +1>0 より,これは解として適する。 α = 0 のとき α = 0 のとき (ア)~ (ウ)より x= la=0のとき a=2のとき -2x = 0 α = 0, 2 のとき = x=0 x= (3) ²x-2ax+α = 0 より a(a−2)x=-a (ア) α = 0 のとき, この方程式は 0.x = 0 よって, すべてのxで成り立つから, 解はすべての実数。 (イ) a=2のとき, この方程式は 0.x = -2 この式は成り立たないから,解はない。( 1 (ウ) α = 0, 2 のとき -2 a- 1± √a² +1 1$ 1± √²+1 Ca a 20 0 = 88 - 1 2-a x²+(a+B)x+αβ=0 (x+α)(x+β)=0 a=0のとき, 与えられ た方程式は1次方程式と なる。 のとき U すべての実数 解なし 08-28- x = _ 1 (²-x) (S 2-a S- 2次方程式 ax2+26′x+c=0 の解は es x= -b'±√√b²-ac a α = 0 の可能性があるか ら、いきなり両辺をαで 割ってはいけない。 x=- a a(a − 2) 3 章 a(a−2) ≠0 より,両辺 をa(a−2) で割って a-2 ROCK JOHAJ 8 2-a 2次関数と2次方程

回答募集中 回答数: 0
数学 高校生

どうして青丸の部分は×になるのですか?? 私は間違えて足してしまいました🫠

例題 200 加法 →例題199 1から9までの数字を書いた 9 枚の番号札がある。この中から同時に3枚の 札を取り出すとき, 数字の和が奇数になる確率を求めよ。 Action 何通りかある事象は、排反事象に分けて考えよ 解法の手順・ ・1 | 数字の和が奇数になる場合を考える。 2それぞれの場合の確率を求める。 3加法定理を利用して、 確率を求める。 ....... 解答 9枚の番号札から3枚を取り出す場合の数は Cg 通り 取り出した3枚の札の数字の和が奇数になるのは,次の2つ の場合がある。 (ア) 3枚とも奇数の場合 (イ) 1枚が奇数で2枚が偶数の場合 (ア),(イ) の事象をそれぞれ A, B とすると,確率を求める事象 は AUB である。 (ア)事象 A が起こるのは、5枚の奇数から3枚を取り出すと きであるから,その確率は 5 C3 5 9 C3 42 (イ) 事象 B が起こるのは, 5枚の奇数から1枚と,4枚の偶 数から2枚を取り出すときであるから, その確率は P(B) = 5C1 X C2 15 9 C3 42 A,Bは互いに排反であるから、求める確率は one of ................ P(AUB)=P(A)+P(B) = P(A) = 5 15 10 + 42 42 = 21さん 12 = 9.8.7 19C3 = 84 3・2・1 和が奇数になるのは,こ の2通りで,同時には起 こらない。 = 奇数は 1,3,5,7,9の 5枚 偶数は2, 4, 6,8の4枚 約分せずにP(A) の分母 裏参脚を転泡とそろえておく。 AとBが同時に起こ ることがない。

回答募集中 回答数: 0
数学 高校生

下のpointに書いてあることって、(1)もそうじゃないんですか??100円玉4枚➡️50円玉8枚なので… 違いがよく分からないので教えてください🙇‍♀️💦

→例題 165 例題 166 積の法則 [2]数えあげ 次のような枚数の硬貨があるとき,そのうちの一部または全部を用いて,ちょ うど支払える金額の種類は全部で何通りあるか。 (1) 100円硬貨4枚 50円硬貨1枚, 10円硬貨3枚 (2) 100円硬貨2枚, 50円硬貨 2枚,10円硬貨 3枚 NO Action 支払える金額の種類は,同じ金額を表す硬貨に注意して数えよ ・・・・・・・1 | 同じ金額となる支払い方を調べる。 解法の手順・ 2 各硬貨の使い方は何通りずつあるか求める。 32 の場合から, 硬貨を1枚も使わない場合を除く。 解答 (1) 用いる硬貨の種類や枚数が異なるとき, 支払える金額は 必ず異なる。 100 円硬貨の使い方は, 0, 1,2,3,4枚の5通り 50 円硬貨の使い方は, 0, 1枚の 2通り 10 円硬貨の使い方は, 0, 1,2,3枚の 4通り よって, 求める場合の数は 5×2 × 4-1=39 (通り) (2) 50円硬貨 2枚と100円硬貨1枚は,同一の金額を表すか ら100円硬貨 2枚を50円硬貨4枚と考えて, 50円硬貨 6 枚,10円硬貨3枚で支払える金額の種類を求める。 50円硬貨の使い方は, 0, 1, 2,3,4,5,6枚の7通り 10円硬貨の使い方は, 0, 1, 2,3枚の 4通り よって, 求める場合の数は 7 × 4-1 = 27 (通り) 「支払える金額」である から0円の場合を除く。 100 円硬貨 2枚と50円硬 貨2枚を組み合わせる と50円きざみで50円 から300円まで支払うこ とができるから50円硬 貨が6枚と考えられる。 下のPoint 参照 0円の場合を除く。 Point 同じ金額となる硬貨の組合せがあるときの注意 例題166 (2) において, 例えば 「100円 1枚, 50円 2枚 10 円 1枚」 と 「100円 2枚 50円 0枚, 10円1枚」 は硬貨の 組合せが異なるが, 金額は同じ210円である。 このように 同じ金額となる硬貨の組合せがあるときは,金額の大きい硬貨を小さい硬貨に換算する ことで、支払える金額の種類を重複なく考えることができる。 50 100 8 *RE 2 A 50 例題 大 道 A 解シ

回答募集中 回答数: 0
数学 高校生

導関数の最大最小の問題です 最後の最大最小のまとめ方がなぜこうなっているのかが分かりません。x=2で最小値-4などはどこから来たのでしょうか。 教えて頂きたいのです よろしくお願いします🙇‍♀️

416 例題 234 関数の最大・最小〔5〕・・・係数に文字を含む よびそのときのxの値を求めよ。 a>0とする関数f(x)=x-3ax 0≦x≦3) の最大値と最小値, お 思考プロセス Re Action 関数の最大・最小は, 極値と端点での値を調べよ 例題228 f'(x)=3x-6ax=3x(x-2a) であり aの値が大きくなるとき, グラフ全体が平行移動するのではなく, 極小値をとるx (2a) が右側へ動いていく。 問題を分ける 最大値と最小値を同時に考えるのは難しいから, 分けて考える。 (極小となる点を 区間に含む 最小値 最大値 x f'(x) + f(x) > 0 0 極小となる点を 区間に含まない / ・・・・・ (最小値)=(極小値) /区間の両端での 値の大小を考える f'(x)=3x²2-6ax=3x(x-2a) f'(x) = 0 とすると x=0, 2a よって, f(x) の増減表は次のようになる。 YA 0 2a 0 + -4a³7 ゆえに,y=f(x)のグラフは右の図。 最小値について (ア) 3 <2a すなわちa> f(x)はx=3のとき 最小値 27-27a - f(x) は x = 24 のとき 最小値-4 3 12/2のとき 3 (イ) 20≦3 すなわちaso2 のとき *** /区間の両端での 値の大小を考える 境界となる 両端の値が等しいときを考える 0 U 0 -4a³ 2a x 2a 3 D YA O 2a N dara 2a a>0 より 2 > 0 S 極小となるx = 24 を区 間 0≦x≦3に含むかど うかで場合分けする。 3 245 = (- 次に, 最大値について f(x)=f(0) となるxの値は x-3ax² = 0 より x2(x-3a) = 0 よって (ア) 3 <3a すなわちa>1 のとき f(x)はx=0のとき 最大値 0 x = 0, 3a (イ) 3a = 3 すなわちα=1のとき f(x) は x = 0, 3のとき 最大値 0 (ウ) 34 <3 すなわちa <1のとき f(x)はx=3のとき 最大値 27-27a a=1のとき 1<a ≤ 3 2 3 2 R O <a のとき -4a³ ------ 0 3a 0 3a3 以上より, f(x) の最大値と最小値,およびそのときのxの 値は ( 8 (0<a<1のとき 2a のとき x=0で最大値 0 x 3.3g 3 x=3 で最大値 27-27a x=2で最小値-4c x = 0, 3 で最大値 0 x=2で最小値 4 x=2αで最小値-4α x=0で最大値 0 x=3で最小値 27-27a 最大値となり得る極大値 f (0) = 0 と等しい値をと るxの値を求める。 p.407 Go Ahead 16 の内 容を用いて, x = 3g を確 認できる。 (Svarar 1 aaa 0 2a 3a x=3g を区間0x3 に含むかどうかで場合分 けする。 (ア) (イ) の最大値は一致 するが、 最大値をとるx の値が異なるから, 分け て考える。 分かりやすいように, 最 後に, 最大値と最小値を まとめる。 Point... 定数を含む関数の最大・最小・ 例題234 において、 場合分けを考えるとき, 固定された区間 0≦x≦3に対して, グラ フを x = 24 や x=3α に着目し伸縮させて考 えた。 (最小値) (ア) 見方を変える 右の図のように、グラフを固定して,区間の端 点x=3を相対的に動かしても考えやすい。 (イ) (最大値) (ア)(イ) (ウ) HUN 0 32a 0 3 3a3 5章 14 導関数の応用 練習 234a>0とする。 関数 f(x)=x-342x (0 ≦x≦1) の最大値と最小値, およ びそのときのxの値を求めよ。 p.430 問題234 41

回答募集中 回答数: 0
数学 高校生

(2)の数列{An+1+An}はーのところで、An+1+Anという数列はどこから来たのですか?An-1+An-2はどこへ行ったのですか?

[例題] 316 場合の数と漸化式 2辺の長さが1と2の長方形と1辺の長さが2の正方形の2種類のタイル がある。 nを自然数とし, 縦2, 横nの長方形の部屋をこれらのタイルで 過不足なく敷き詰めるときの並べ方の総数を Am で表す。 (1) n ≧3のとき, An を An-1, An-2 を用いて表せ。 (2) Ann を用いて表せ。 思考プロセス 具体的に考える 例題 307 Am を敷き詰める 最初にをおくと 最初に 最初に をおくと2 をおくと An+An-1=2 (An-1+An-2) --2- -2-- An-2A-1=-(An-1-2An-2) 3 ②より, 数列{An+1 + An} は初項 A2 + A1 = 4, 公比2の等比数列であるから n Action» n を含んだ場合の数は,最初の試行で場合に分けよ 解 (1) 左端に長辺を縦にした長方形を並べるとき 残り縦2, 横 (n-1)の部分の並べ方は A-1 通り (イ) 左端に長辺を横にした長方形を並べるとき 残り縦2, 横 (n-2)の部分の並べ方は A-2 通り (ウ) 左端に正方形を並べるとき 残り縦2, 横 (n-2)の部分の並べ方は A-2 通り (ア)~ (ウ)より An=An-1+2An-2 ① (2) ① を変形すると A-1 An+1+An=4.2-1 = 2+1 ③より, 数列{An+1-2Am} は初項 A2-2A1 = 1, 公比1の等比数列であるから An+1-2An=1,(-1)"^'=(−1)"-' ④ ⑤ より 3An=2+1-(-1)^-' よって An = 1/1/12 (2711-(-1)^-1) n-2 An-2 n-2 An-2 (東京大) ← 斜線部分 も 特性方程式 x2-x-2=0 より x=-1,2 より A = 1 ①日 より Ag = 3 [練習 316 先頭車両から順に1からnまでの番号の付いた両編成の列車がある。 ただ し≧2 とする。 各車両を赤色, 青色, 黄色のいずれか1色で塗るとき, 隣 り合った車両の少なくとも一方が赤色となるような色の塗り方は何通りか。 (京都大) p.570 問題316 6 章 18 化式と数学的帰納法 547

回答募集中 回答数: 0
数学 高校生

下から3行目のn=k+1 はどこから出てきたのかわかりません。教えていただけると助かります!

例例題 274 2つの等差数列の共通の 初項1,公差2の等差数列{an} と初項 1, 公差3の等差数列{bn}がある。 (1) 数列{an}と{bn}の一般項をそれぞれ求めよ。 思考プロセス (2) 数列{an} と {bn}に共通して含まれる項を小さい方から順に並べてで きる数列{cn}の一般項を求めよ。 3176 H (2) 未知のものを文字でおく {an}の第1項と{bn}の第m項が等しいとする。 ⇒21-1=3m-2 (L,mは自然数)す 1 (1) 数列 {an}の一般項は an=1+(n-1) 2=2n-1 >21-3m=-1の自然数解 BAINS 1次不定方程式 Action» 等差数列{an},{bn}の共通項は,a=bm として不定方程式を解け 脂質問を募ることの門商法 数列{bn}の一般項は a S bn=1+(n-1)・3=3n-2 (★★) 309 (2) {an}の第1項と{bn}の第m項が等しいとすると, 21-1=3m-2より 21-3m=-1 l=1,m=1 はこれを満たすから 40 2(1-1)=3(m-1) ・① 2と3は互いに素であるから, 1-1は3の倍数である。 よって, l1 = 3k(kは整数)とおくと l=3k+1 これを①に代入して整理すると m=2k+1 lm は自然数より k = 0, 1, 2, nは自然数より,n=k+1 とおくと k=n-1 ゆえに, l=3n-2 (n=1,2,3, ・・・) であるから Cn = d3n-2= -2=2(3n-2)-1=6n-5 〔別解) A IS 2つの等差数列の項を書き並べると {an}: 1, 3,5,7, 9, 11, 13,15, 17, 19, です SSS - ST {6}: 1,4,7, 10, 13, 16, 19, よって、求める数列{cm} は,初項1の等差数列となる。 公差は2つの数列の公差2,3の最小公倍数6である から Cn=1+(n-1)・6=6n-5 一 a=bm 165303 21-3m=-1 -) 2・1-3・1 = -1 2(1-1)-3(m-1)=0 [*+-+*+/ 3k+1≧1 より ≧0 【2k+1≧1 より ≧0 AREN ■nとんの対応は,不定 方程式 ① を解くときに用 整数1, m の組によっ 変わる。 具体的に考える {an},{bn} を具体的に書 き出して、規則性を見つ ける {cm}:1,7,13, 19, EVAYER 3ªð

回答募集中 回答数: 0
数学 高校生

(1)が分かりません。 f(x)=kとおいて、kとの交点が実数解になってるのですが、なぜそんな変形をしていいのですか?

なぜ こうで 例題219 高次方程式の実数解の個数 [2] kを定数とする。 3次方程式 2x-6x+1-k = 0 ... ① について (1) 方程式 ① の異なる実数解の個数を調べよ。 ○ (2) 方程式 ①が異なる2つの負の解と1つの正の解をもつようなkの値の 範囲を求めよ。 Action 方程式f(x) = k の実数解は, y = f(x)のグラフと直線y=k の共有点を調べよ 解法の手順・ ・1方程式をf(x)=kの形に変形する。 2f(x) の増減, 極値を調べ y=f(x)のグラフをかく。 32のグラフとy=kの共有点の個数を調べる。 解答 (1) 方程式 ① は 2x-6x+1 = kと変形できるから ① の異なる実数解の個数は, y=2x-6x+1のグラフと 直線y=kの共有点の個数と一致する。 f(x)=2x-6x+1 とおくと f'(x) = 6x² - 6 = 6(x+1)(x-1) f'(x) = 0 とおくと x = -1, 1 よって, f(x) の増減表は次のようになる。 -1 1 f'(x) + 20 20 + f(x) 5 △ -3> 増減表より, y=f(x)のグラフ は右の図のようになるから, ① の 異なる実数解の個数は x ... ... - (-3<k<5のとき k=-3,5のとき lk <-3.5<bのとき 3個 2個 1個 YA 10 -3 15 1 ly=f(x) y=k 例題218, JA115 x f(x) = k の形に変形す る。 y=f(x) の増減を調べ てそのグラフをかく。 YA 15 k x 1個 -2個 3個 -2個 1個

回答募集中 回答数: 0