学年

教科

質問の種類

数学 高校生

数Aです この問題の(2) …②のところの ∠AHP=90°-∠BAH=∠ABH になる理由が分かりません 教えてください🙇‍♀️

練習問題 5 鋭角三角形ABCがある. 頂点Aから辺BCに下ろした垂線の足をHと 78 さらにHから辺AB, ACに下ろした垂線の足をそれぞれP, Qとす る。 (1) A, P, H, Q は同一円周上にあることを示せ . (2) P, B, C, Q は同一円周上にあることを示せ . この問題では, 「内接四角形の定理の逆」 を使ってみましょう。 あ る四角形の 「対角の和が180°」 であれば、 その四角形は円に内接 10 することがわかります. 練習問題4 (2)で見たように, 「対角の和が180°」 であ ることは 「ある内角がその“対角の外角” と等しい」ことと同じであることも 頭に入れておくといいでしょう. 新 主月 ハロ mm 解答 (1) APH + ∠ AQH=90°+90°=180°であるから, 内接四角形の定理の逆より、四角形 APHQは円 に内接する。 つまり, A, P,H,Qは同一円周上 にある。19/ (2) A, P, H, Q は同一円周上にあるので, 円周角 B' の定理よりもBARAの立 ∠AQP=∠AHP .......1 また, ∠AHB=90° ∠APH=90° より . TEA H ∠AHP=90°∠BAH=∠ABH....... ② B は、1つの頂点の内角がその 「対角の外角」 と等しいので、内接四角形の定 ①,②より,∠AQP=∠PBC. 四角形 PBCQ 理の逆より、四角形 PBCQ は円に内接する。 したがって, P, B, C.Qは 同一円周上にある。 313 問題です。 こういう問題では、「結 う方向で考えていくといい の定理の逆が 第8章

回答募集中 回答数: 0
数学 高校生

赤く丸をしたbの問題で解答の方に二階微分した後の式がなぜ(-1/4)(-1/4)(H-27)になるのか分かりません。教えてください🙇‍♀️

QA At time t = 0, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than 27°C for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation dH (H- (H-27), where H(t) is dt measured in degrees Celsius and H(0) = 91. (a) Write an equation for the line tangent to the graph of Hat t = 0. Use this equation to approximate the internal temperature of the potato at time t = 3. (b) Use 2017 APⓇ CALCULUS AB FREE-RESPONSE QUESTIONS (a) dH d²H dt² to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3. (c) For t < 10, an alternate model for the internal temperature of the potato at time 7 minutes is the function -= − (G - 27)²/3, where G(t) is measured in degrees Celsius dG G that satisfies the differential equation dt and G(0) = 91. Find an expression for G(t). Based on this model, what is the internal temperature of the potato at time t = 3 ? 564 at (21-27) - == 2-16 To = - = (H(3)-27) 4 -64 = HB)-27 -37 = H (3) (b) _d²fi © 2017 The College Board. Visit the College Board on the Web: www.collegeboard.org. GO ON TO THE NEXT P

回答募集中 回答数: 0
数学 高校生

詳しく解説お願いします。 よろしくお願いします。

26 例題 7 二項係数の性質 (1 + x)” の展開式を利用して,次の等式を証明せよ。 (1) nCo+nC₁+nC₂+ • • •+nCn−1+nCn = 2" (2) nCo-nC1+nC2-‥‥+(-1)^-1nCn−1+(-1)*nCn=0x 思考プロセス すなわち 逆向きに考える (1), (②2)の式は,①のxにそれぞれ何を代入したものか? RICO $+B) <<noin (1+x)" = "Co•1"+ "C1"-1.x + "C2・1月-2x2+ ... +nCn-1・1・x"-1+nCm・x" ... »Co+nC1x+nC2x² + ··· +nCn-1x"−¹+nCnx” = (1+x)ª) ¨¨· D · Telpla Action>> 二項係数の和は、(1+x)” の展開式を利用せよ 二項定理により 解 二項定理を用いて, (1+x)" を展開すると (1+x)" = nCo+nCix+nCzx2+ SUNG (1) ① に x=1 を代入すると ..+nCn-1xn-1+nCnxn (1+1)" = nCo+nC1・1+nC2・1+ よって (2) ① にx= -1 を代入すると 練習 7 1513 (1−1)″ = nCo+nC₁(−1)+nC₂(−1)² + ... [ nCo+nC1+nC2+..+nCn-1+nCn = 2n @ $6€ + $$• ・+nCn-1・17-1+nCn1n nCo Point.... 二項係数の性質 (a+b)" の展開式の係数に現れる "Cy を二項係数という。 二項係数には,次のような性質がある。 よって n Co-nC1+nC2-‥..+(-1)^-1nCn-1+(-1)"nCn=0 ..+nCn-1(-1)n−1+nCn(-1)" (1) nCr = nCn-r (2) +1Cr+1=nCr+nCr+1 (3) nCo+nC₁+nC₂+ • • •+nCn−1+nCn = 2² (4) nConC₁+nC₂ — • • • + (−1)n-¹ nCn-1 + (−1)" nCn = 0 (5) C1+2C2+3mCs+..+(n-1)C1+nnCn=n2"-1 (80) = ( *(1-PSIT INSIT ) (1+x) の展開式の一般 項は Crx" である。 ① はどのようなxの値に ついても成り立つ。 5d² Jei TEATRE C (1+1)" = 2" ISITIS rが偶数のとき (-1)' = 1 rが奇数のとき (-1)'=-1 J (1) 18-01S (1+x)" の展開式を利用して,次の等式を証明せよ。 (1) C-2C1+2°C2-...+(-2)-1,C-1+(-2)"C=(−1)" (2) nCinC2 "C₁ + ² + (−1)n-1 ~Ce-1 + (−1) nCr 2 22 nCn−1 on-1² (>7 (1)) 例題7 (2) (問題7 (2)) PR (S) 1

回答募集中 回答数: 0