学年

教科

質問の種類

数学 高校生

(3)の解説で 「ここで、~」以降のところがわからないので教えて欲しいです!!

第3章 47 軌跡(V) mを実数とする.ry平面上の2直線 76 基礎問 基礎問 とは、入試 問題を言い この「基礎 まとめてあり について,次の問いに答えよ. 98 出題される げ 教科書 ■ 。 特に、 5/8 ■アできる mx-y=0.① +m x+my-2m-2=0 ......②2 (1) ①,②はmの値にかかわらず,それぞれ定点 A,Bを通る。 A,Bの座標を求めよ. ○ (2) ① ②は直交することを示せ. (3) ①②の交点の軌跡を求めよ. 一つのテー ーマは原 やすくな 精講 (1) 「mの値にかかわらず」 とあるので,「mについて整理」して mについての恒等式と考えます. (37) (2) ②が 「y」 の形にできません. (36) ことはないので(注), (0, 2)は含まれない. よって、 求める軌跡は O-8 円 (x-1)+(y-122 から, 点 (02)を除いたもの. 注 一般に,y=mx+n 型直線は, y 軸と平行な直線は表せません. それは,yの頭に文字がないので,m,nにどんな数値を代入しても 77 必ず残って,r=kの形にできないからです。 逆に,xの頭には文 字がついているので,m=0 を代入すれば,y=nという形にでき, 軸に平行な直線を表すことができます。 45 の要領で①,②の交点を求めてみると 参考 2 (1+m) 2m(1+m) x= 1+m² 1+m²,y= となり,まともにmを消去しようとすると容易ではなく, 除外点を見つける こともタイヘンです. もしも誘導がなければ次のような解答ができます. こ aisons れが普通の解答です. x=0 のとき,①よりm=¥で割りたいの (3) ①②の交点の座標を求めて, 45 のマネをするとかなり大変です したがって,(1),(2)を利用することを考えます。このとき、4 IIIを忘れてはいけません. IC で≠0. r=0 ②に代入して y² 2y -2=0 で場合分け I IC 解 答 :.x'+y2-2y-2x=0 .. (x-1)+(y-1)²=2 YA 2 (1)の値にかかわらずmx-y=0が成りたつとき, x=y=0 A(0, 0) ②より (y-2)m+(x-2)=0 だからy-2=0、x=0mについて整理 .. B(2, 2) 次に, x=0 のとき,①より,y=0 0 これを②に代入すると,m=-1 となり実数が存在するので 点 (0, 0) は適する. 以上のことより, ① ②の交点の軌跡は円 (x-1)+(y-1)²=2 から点 (0, 2) を除いたもの. (2) m・1+(-1)・m=0 だから, aia2+bib2=0 36 ポイント ①,②は直交する. より, ∠APB=90° (3)(1),(2)より ① ② の交点をPとすると ① 1 ② ある円周上にある. その際, 除外点に注意する 定点を通る2直線が直交しているとき, その交点は, y 2 よって、円周角と中心角の関係よりPは2点A, B よって, (x-1)^2+(y-1)²=2 また,AB=2√2 より 半径は2 Bを直径の両端とする円周上にあるこの円の中 心は ABの中点で (11) (1泊) 演習問題 47 0 A 2x ここで,①はy軸と一致することはなく、 ②は直線 y=2 と一致する tを実数とする. ry 平面上の2直線 l : tx-y=t, m:x+ty=2t+1 について, 次の問いに答えよ. (1) tの値にかかわらず, 1, mはそれぞれ, 定点 A, B を通る. A,Bの座標を求めよ. (2), mの交点Pの軌跡を求めよ.

回答募集中 回答数: 0
数学 高校生

赤い線を引いたところが,なぜなのか分かりません💦

コメント 結果的にいえば、2つの円の方程式を の方 x2+y^-5=0……①,r'+y^-6x+2y+5=0 とするとき2円の交点を通る直線は ①②であっさり求められるわけです. 最初聞いたときは, 「えっ、なんで?」と思ったものですが,すでに説明した ように,「①,②」と「①-②②」の同値関係を考えることで説明できるわ けですね. すが 奈良 この「同値」の考え方の威力を感じていただくために,次のような問題を絡 介しておきましょう. 例題 平面上に3つの円があり,どの2つの円も異なる2点で交わっているも のとする.各2円の異なる2つの交点を結ぶ3つの直線は1点で交わるこ とを示せ. 設定がとても一般的ですので,解こうにも何から手を つけてよいのかわからないような問題ですね.ところが, 図形と方程式の考え方を用いれば,ほとんど計算をする ことなく証明できてしまうのです. まず,3つの円を一般形 (x'+y' + lxc+my+n=0の 形)で表した方程式を ① ② ③とします.すると,①と②の2つの交点を通 る直線は 「①-②」, ②と③の2つの交点を通る直線は 「②③」, ①と③の2 つの交点を通る直線は 「①③」 と表せます. (2x 2-3 この +2①-2 (1)(2 これは、 (3) 一致する ②③ ①+ 1-3 けば ③ ことな る ここで 件は、 が成り立つことです ①③=(①-②)+(②-31- 0 (S) なのですから, 「①-② ②③」 と 「①③ ② ③」は同値です。 つまり、 それぞれの直線の交点は一致するわけですから,3直線は1点で交わります.

回答募集中 回答数: 0
数学 高校生

この下の例題で、各円の方程式を引いたらそれぞれの交点を通るのは分かるのですが、「ここで」の後がいまいちピンと来ません。丁寧に解説お願いしたいです

90 第3章 図形と方程式 コメント 結果的にいえば、 2つの円の方程式を x² + y²-5=0, x²+y²−6x+2y+5=0__····· とすると円の交点を通る直線は①②であっさり求められるわけです。 最初聞いたときは, 「えっ、なんで?」 と思ったものですが,すでに説明した ように, 「①②」 と 「①-②, ②」の同値関係を考えることで説明できるわ けですね. 「この「同値」の考え方の威力を感じていただくために,次のような問題を紹 介しておきましょう. 例題 平面上に3つの円があり,どの2つの円も異なる2点で交わっているも のとする.各2円の異なる2つの交点を結ぶ3つの直線は1点で交わるこ るので、 とを示せ . 設定がとても一般的ですので,解こうにも何から手を つけてよいのかわからないような問題ですね. ところが上回 図形と方程式の考え方を用いれば、 ほとんど計算をする ことなく証明できてしまうのです. まず3つの円を一般形 (x2+y^+lx+my+n=0の 形)で表した方程式を ① ② ③とします. すると, ①と②の2つの交点を通 る直線は「①-②」,②と③の2つの交点を通る直線は 「②③」, ①と③の2 つの交点を通る直線は 「①③」 と表せます. 「ここで 一致する 2-3813 ①ONOS 1359 1-3=(1-2)+(2-3) 1-= del なのですから, ①②, ②-③」 と 「①-③, ② - ③」は同値です.つまり、 それぞれの直線の交点は一致するわけですから、3直線は1点で交わります。 し

回答募集中 回答数: 0
数学 高校生

29番の(1)で必要十分条件を求める問題で、どちらが必要条件でどちらが十分条件か分からなくなってしまいました。考え方を教えて頂きたいです。

28 よって ここで ゆえに −(n=k+1}{n+k+1)+(n−k)(n+k) n→∞0 =-2k²+(2n²+2n+1) f(n)=-4 f(x)=x(2k² +2n² +2n+1) k²=0+22k², 1=2n+1 TA³5 k=1 −42 k²+(2n²+2n+1) (2n+1) k=1 − n(n+1)(2n+1)+(2n²+2n+1)(2n+1) lim 72-00 n³ (2) f(n) -1/(1+1/2)(2+1/2)+(2+1/2)(2+1)} =--²--1-2+2-2= 8 3 3 別解n≦x≦k, k≦x≦n と k<x<kに分けて,直線 y軸に平行な直線につ x=i (-n≦i≦n) 上にある格子点の数を求める。 さて格子点を数える。 = -n≦i≦k のとき, 格子点の数は k=-n 1+3++{2(n−k+1)−1}=(n−k+1)² = (+_____________ k<i<kのとき, 直線 x = i の本数は ←-k+1≦isk-1 各直線上の格子点の数は よって k-1-(−k+1)+1=2k-1 = I=gb S=b 2(n-k+1)-1=2n-2k+1 Nk=2(n-k+1)+(2n-2k+1)(2k-1) =-2k²+(2n²+2n+1) 総合を複素数とする。 自然数nに対し、2” の実部と虚部をそれぞれxとyとして、2つの数列 29 {Xn},{yn}を考える。 つまり, z=xn+iy" (iは虚数単位) を満たしている。 (1) 複素数zが正の実数と実数0を用いて z=r (cos0+isine) の形で与えられたとき、 数列{x},{ym} がともに0に収束するための必要十分条件を求めよ。 1+√3 10 = n(n+1)(2n+1) のとき、無限級数Σx とΣy はともに収束し, それぞれの和は n=1 71=1 x=2y=イロである。 (1) z=r (cos0+isin0) [r>0] のとき HINT (1) x²+y² = (r")2 となることに注目し, まず必要条件を求める。 (2) z を等比数列の和の公式を利用した式で表してみる。 ORAN z"=r" (cosnotisinn()=r"cosn0 +ir” sinne Xn=r" cosnd, yn=r"sinno よって ゆえに x2+yn²=(r")' (cos2nd+sin'nb)=(x2)" limxn=limyn=0のとき lim(x²+ym²)=0 〔類 慶応大] 本冊 例題 13,102 ←ド・モアブルの定理。 ←=xn+iy 0sr²<1 よって に0<r<1のとき 1-400 0<r<1より, lim|rl"=0であるから ゆえに 0≦|x|=||"|cos nolsrp. よって 0≦ly|=|||sinner| また 以上から、求める必要十分条件は +③iのとき 10 lim|x|=lim|y|= 0 71-00 ゆえに 1110 Z ここで1-2 lim xnn-000 ZR= ここで k=1 z(1-2)= 1-² よって 1- 1+√3 i 10 1+√3 i 10 k=1 84 3+5√3 i 42 (1+√3i)(9+√3 i) (9-√3i)(9+√3 i) 6+10√3i_3+5√3i 2x= k=1 1-2 (1-(xn+iyn)) 1+√3 i 9-√3i 11-0 0721 0<r<1 n=1] -(1-Xn-iyn) 2R= = 1/2 (3(1-xn) +5√3 yn+(5√/3 (1–xn)—3yn}i) z*= (xn+iyn)= xx+iZyn k=1 3(1-x₂)+5√√3 yn 42 ΣXn² n=1 42 5√3 (1-xn)-3yn 42 0</1/3 <1であるから, (1) の結果より limxn=limyn = 0 „=lim 11-00 2 k=1 2 = = = = ( 1²/2 + √²³_i) = = = (cos / 1 + isin) Σyn=lim- 11-0 ←Sa<1のとき a²19 a=1のとき、 α>1のとき、18 42 ←xel Saxolxel から、 xel 0のとき 初項z. 公比zの等比 数列の初項から第 環 までの和 12-00 3 (1-x)+5√3ym_3_71 42 5√3 (1-xn)-3yn_15√/3 42 -419 ←分母の実数化。 42 14 ← 22 のもう1つの表現。 ←実部、虚部をそれぞれ 比較。 (12) 結果を利用 総合 N=1 £ =lim ży

回答募集中 回答数: 0