学年

教科

質問の種類

数学 高校生

何回も計算しても答えと合いません💦 どこが間違ってるか教えて頂きたいです… 27番の問題です!見にくくて申し訳ないです。

03k+21=0} ゆえに 12-t=k 1-2k+1=-7 これを解くと ES k=2,l=-3 ①を② に代入すると 1-4+3t = -4k ( ゆえに e=2a-36 よって -4+3t=-4(2-t) t=4 Point 16 座標と成分表示 (1) 28 A(a1, a2),B(b, b2) のとき ① 2 [1] AB=(b1-ai, b2-az) [2] [AB|= √(b2-a1)+(b2-az)2 25 Tei A(2, 1), B(6,3), C(4,-1) であるから AB=(6-2,3-1) = (4,2) 考え方 (2) がはtの2次式になるので、 平方 成して最小値を調べる。 1620 より かが最小のときも最小となる (1) b=a+b=(6,-2)+(0, 2) = (6, 2t-2) 62+ (2t-2)^ = 102 Point 16 [1] ||=10 より (S) また |AB| = √4°+2° =2√5 -Point 16 [2] t2-2t-15 = 0 (t+3)(t-5)=0 また また BC=(4-6, -1-3) = (-2,-4) |BC|=√(-2)+(-4) = 2/5 CA =(2-4, 1-(-1)) = (-2, 2) |CA| = √(-2)^+ 2 = 2√2 よって t = -3,5 (2) n2=62+ (2t-22 = 4t2 - 8t +40 =4(t-1)2 +36 ―平方完 26 したがって, t=1のとき, がは 36 をとる。 点の座標を(x, y) とすると,AD=BC で あるから (x-1), y-1)=(7-4, 2-4) よって x+1=3, y-1=-2 ゆえに x=2, y=-1 したがって D(2, -1)=1+ Level Up レベルアップ 27 (1) 考え方 + to を成分表示し, ベクトルの平行条件 を利用する。 a+tb=(2-4)+t(-1,3) =(2-t, -4+3t) (a+tb) // c であるから,実数を用いると このときも最小となり,最小値 √36 = 6 よって t=1のとき 最小値 6 29 考え方 ひし形の対角線は角の二等分線に から OA, OB それぞれと同じ ベクトルの和を考える。 |A| Fy B(-6, 2) =√12+(-3)2人 √10 3&OB =√√(-6)+2 = 2√/10 a+tb = kc _c = k(a+tb) よって、∠AOB の よって (2-t, -4+3t) = k(1, −4)** も計算しやすい 二等分線と平行であるベクトルは 用いて =(k, -4k) (E)

解決済み 回答数: 1
数学 高校生

解の公式の形において2枚目の3問目の様に3つとも約分可能でなければ約分してはいけないのでしょうか 2枚目の追加画像は分母「2」と分子「4」と「1」なので約分せずそのままなのでしょうか

15:56 6月10日 (月) detail.chiebukuro.yahoo.co.jp その他の回答 (2件) tytytyさん 2010/6/24 15:43 約分ってのは 分子と分母に同じ数で割ることなので (1)の分子は (9±√/21)で分母は6ですね なので仮に3で約分 (3で分子と分母を割る)すると 分子は (9±√21)÷3 となりさらに分数ができてしまいます。 よって (1) は約分できません。 同じように(2)も約分できません。 しかし解答が約分してあるなら 5/4(2√/23)/4と分けて 5/4±(√23)/2とするしかありません。 参考になる 1 men********さん ありがとう 感動した 面白い 0 新しい順 51% 2010/6/24 15:34 あなたの意見の「3つとも約分可能でなければ約分してはいけない」は正解です。 【2】 の約分は出来ません。 約分するのであれば、分母を2つに分けて 5/4(2/23)/4と分ければしてもよいです。 解答が間違っているか、5の部分が、 別の偶数だったりするのではないでしょうか。 参考になる ありがとう 感動した 0 0 0 あわせて知りたい ④ TOYOTA ふさがりがち。 自動開閉がうれしい! SIENTA 家族で笑った! シエンタ! トヨタ自動車株式会社 面白い

解決済み 回答数: 1
数学 高校生

ィの解説の(iii)でなんで-の方も成り立つのですか?

163 直方体 右図のような直方体 OADB-CEFG において OA=a, OB=6,DC=c とおく. \G F P ||=1,|6|=2, ||=3 とし, 2点E, Gを通る C 直線を とする. E (1) OE, OG を で表せ (2)Pを1上の点とする. このとき, OPは実数 tを用いて, OP =OE+tEG と表せる。 (ア) OP⊥EGとなるtの値を求めよ. (イ)△OEP が二等辺三角形となるときの 値をすべて求めよ. 3 B O 2 b a 1 A AA D ()() (2) (ア) OP, EG (=OG-OE) を a, L, で表し,|a|=1,||=2, 精講 ||=3, a1=c=cd=0 を用いて計算すれば, tの方程式が でてきます. これを解けば答えはでてきます. (イ) 二等辺三角形という条件は要注意です. それはどの2辺が等しいかによっ て,3つの場合が考えられるからです。 注 →3つの場合でしらべる 三辺の距離を求める (イ)|OE|=12+32=10 |OP|=|(1-t)a+t+c (1) 画 =(1−t)|a²+b²+1c1² (a+b=b.c=c.a=0) J30=12-21+1+4t²+9=5t²-2t+10 |EP|=|tEG|2=5t2 ← (i) OE OP のとき, OEPOP より,エース 253 10=5t2-2t+10 t(5t-2)=0.. t = // (t=0は不適 (OPEP のとき,|OP|=|EP|より 5t2-2t+10=5t2 2t+10=0 :.t=5 POE のとき,|EP|=|OÉRより,平日 5t2=10 t2=2. t=±√2 (1)〜() より t=±√2, 5' (2) 直方体では, 座標も有効な手段です. すなわち, A (1, 0, 0), B(0, 2, 0), C(0, 0, 3) とおくと, EG=AB だから OP= (1,0,3)+t(-1,2,0)=(-t+1, 2t3) と表せ, P(-t+1, 2t, 3), E (1, 0, 3) と座標で表して, OP2, EP2, OE' を計 算します。 解答 (1) OE=OA+OC=d+c OG=OB+OC=6+ (2) (ア)OP=OE+tEGOE+(OG-OE) =a+c+t(-a) =(1−t)a+to+c OPEG = 0 だから {(1-t)a+to+c)(-a)=0 . (t−1)|at|62=0 ||=1,||=2より t-1+4t=0 5 ( à·b=b.c=c·à=0) ポイント単に「二等辺三角形」「直角三角形」 とあったら, 場合 が3種類あることに注意 演習問題 163 右図の直方体において, AG = (5, 5, -3), H G AC=(3,1,2), BH=(3,1,-7) が成りた っている. (1) AB, AD, AE を成分で表せ. (2)直線AH 上に, △ABP が二等辺三角形 A となるように点Pをとる. (ア) <BAH= を示せ. (イ) A=tA となる実数tの値を求めよ. Di F 第8章

未解決 回答数: 1