学年

教科

質問の種類

数学 高校生

下の問題について、下の解答を全て書かないと‪✕‬になるでしょうか?また、書かなくていい所を教えてください🙇‍♀️お願いしますm(_ _)m

応用問題 (1)3個のサイコロを同時に投げるとき,目の数の和が9になる確率を求 めよ. (2)4人でジャンケンをするとき,1人が勝つ確率,2人が勝つ確率,3 人が勝つ確率, あいこになる確率を求めよ. 精講 「確率」の問題の難しさのほとんどは,実は「場合の数」を求める 難しさです. 自分がいま,どのような基準でものを数えているのか をきちんと意識して計算していきましょう. 解答 (1)3個のサイコロを A, B, Cと区別して考える.目の出方は 6×6×6=216通り で,これらは同様に確からしい. 次に和が「9になる」ような目の出方が何通 りあるかを考えよう. 2. 34 3. まず目の出る 「組合せ」 がどのようなもの かを調べる. 2 2- 9 5 45 重複するものを数えないように 「右にいくほ ど数が大きくなる(同じ数でも構わない)」とい うルールで樹形図をかいていくと、右図のよう に6通りの組合せが得られる. 34 3- -3-3 さて次に,それぞれの目の組合せについて,それらの目を A,B,Cの3 つのサイコロに割り振る方法が何通りあるかを考えよう. 例えば,(1,2,6)のように、すべてが異なる目であれば,それを A,B, Cに割り振る方法は3通りとなるし(1,4,4)のように,重複する数が1 組含まれていれば, 1, 4, 4を並べて左から順に A,B,Cに割り振ると考 えて2通りある(「同じものを含む順列」の公式より)。 すべての組合せについて調べると、次ページの図のようになる. したがって,目の数の和が 9 になるような A,B,Cの目の出方は(和の 去則より)

未解決 回答数: 1
数学 高校生

どうして積の偏角は偏角の和になるのですか?

C2-24 (372) 第5章 複素数平面 例題 C2.13 極形式の積・商 6(cos 80+isin 80) (cos 30-isin 30) **** の値を求め ( 星薬科大) 18 (1)2010 のとき. 例 cos 20+isin 20 た (2) α+β= のとき, cos a-isin a cos β-isin β cos βtisinβ cosa +isina の値を求めよ. 考え 考え方 解答 -0 (広島工業大) (1) cos30-isin30=cos(-30)+isin(-30) とし,積商の極形式を利用する (2)商の極形式が適用できるよう,分子を 十 COS |-isin=cos(-■) +isin(-■ とする. (1) cos30-isin30=cos(-30)+isin (-30) より, (2) 6(cos 80+isin 80) (cos 30-isin 30) cos 20+isin 20 6(cos80+isin80){cos(-30)+isin (-30)} cos 20+isin 20 =6[cos{80+(-30)-20}+isin{80+(-30)-20}] =6(cos30+isin.30)=6lcos(3×1) +isin (3×1)} =6(cos/0/+isinn)=6(1/23+12/21)=3√3+3 cosa-isina_cos(-a)+isin (-α) cos β+isin β cos βtisinβ 極形式のisin ■ の 前は+にする. 複素数の積 → 偏角は和, 複素数の商 偏角は差 0=7 を代入 18 解 平 =cos(-a-β)+isin(-α-β) =cos(a+β)-isin(a+β) ① 同様に, COS cosa +isina 商の極形式 cos(0)=cost sin(-0)=-sin A os β-isin β -=cos (a+β)-isin (a +β)...... ② を利用した. よって、①,②とα+B=1より ・だけ回転し、 cos a-isin a cos B-isin ẞ cosa+isina Focus cos β+isin β =2(cos/isin)=2(12-1)=1-3i (極形式の積の偏角)=(偏角の和) (極形式の商の偏角)=(分子の偏角)(分母の偏角) 注)(2)については分母を実数化して考えてもよい。

回答募集中 回答数: 0
数学 高校生

この問題でBの家とCの家に帽子を忘れるときに3/4をかけるのは何故ですか。教えてください。

242 第5章確率 練習問題 11 あるセールスマンは, 家を訪問すると の確率で帽子を忘れてくる. 4 このセールスマンが帽子をかぶって出かけ,A,B,Cの3つの家をこの 順に訪問して帰ってきたところ、帽子を3つの家のどこかに忘れてきたこ とに気がついた.この人がAの家に帽子を忘れた確率を求めよ. 精講 事後の確率の有名問題です。単に「Aの家に帽子を忘れてきた」確 率であれば, です.しかし,このセールスマンが「どこかに帽 4 子を置き忘れてきた」という情報を知ってしまったことにより,その確率は変 わってきます.ここでも、面積図の考え方がとても有効です. セールスマンが Aの家に帽子を忘れる確率は 1 4 解答 Bの家に帽子を忘れる確率は 31 3 -X-= 44 16 Cの家に帽子を忘れる確率は 3 3 1 9 x-x A どこかで帽子を忘れる Aで忘れる 1 ① Cで忘れる 忘94 64 4 4 4 64 3 忘れない これを面積図にまとめると, 右図のよう になる. 「どこかに帽子を忘れてきた」という条 件のもとで「Aの家に帽子を忘れてきた」 確率は,図の「青枠」 の中に占める 「水色 の網かけ部分」の面積比である. よって、求める確率は 1 4 1 + 4 316 9 + 16 16 16+12+9 37 64 13 Bで忘れる 31 |1| (3

未解決 回答数: 1
数学 高校生

この二問、問題の解き方と答えを教えてください。 明日テストなんですけど、それまでに教えてください!!

演習問題 日本とイギリスとの統治制度の違いを比較した次の記述 A~Dのうち適当なものを二つ選び、その 一組合せとして最も適当なものを,下の①~⑥のうちから一つ選べ。 A 日本では,首相が国会議員の中から国会の議決で指名されるが, イギリスでは,首相が国民の直接 選挙で選ばれる首相公選制を採用している。 B 日本は 「日本国憲法」 という成文の憲法典を持つが、イギリスは「連合王国憲法」というような国 としての憲法典を持たない。 C 日本では,通常裁判所が違憲立法審査権を行使するが, イギリスでは, 通常裁判所とは別個に設け られた憲法裁判所が違憲立法審査権を行使する。 D 日本の参議院は, 選挙により一般国民の中から議員が選ばれるが,イギリスの上院は, 貴族身分を 有する者により構成されている。 ① AとB ② AとC ③ AとD ④ BとC ⑤ BとD ⑥ CとD 2004年センター試験政治・経済 本試〉 以下の 「民主主義とは何か」の意見を元に生徒2人が議論をした。 W ア~エの記述が一つずつ, 一回だけ入る。 生徒Aの発言である 組合せとして最も適当なものを、下の①~⑥のうちから一つ選べ。 ただし、 てはまる記述の順序は問わないものとする。 W Z にはそれぞれ . Z に当てはまる記述の W Z に当 ●国政の重要な事項は国民全員に関わるものであるが,主権者である国民が決めるのであれ, 国民の 代表者が決めるのであれ、全員の意見が一致することはありえないのだから, 過半数の賛成によっ て決めるのが民主主義だ。 生徒A: 議会では, 議決を行う前に, 少数意見を尊重しながら十分に議論を行わなければいけないと 思うよ。 生徒B: でもちゃんと多数決で決めるのだから, 時間をかけて議論をしなくてもよいと思うなあ。 なぜ議論をしないといけないの? 生徒A: それは, W からじゃないかな。 生徒B : いや, X。それに Y 生徒A: 仮にそうだとしても、 Z それに、議論を尽くす中で,最終的な決定の理由が明らか 。 になり、記録に残すことで, 後からその決定の正しさを振り返ることができるんじゃないか な。 ア 時間をかけて議論をすることで人々の意見が変わる可能性がある イ決定すべき事項の中には、人種、信条、性別などによって根本的に意見の異なるものがある ウ 少数意見をもつ人たちも自分たちの意見を聴いてもらえたと感じたら, 最終的な決定を受け入れや すくなる エ 時間をかけて議論をしても人々の意見は変わらない ①アとイ ②アとウ ③アとエ ④ イとウ ⑤ イとエ ⑥ ウとエ 2018年大学入学共通テスト試行調査 政治経済〉 第5章 民主国家における基本原理 43

回答募集中 回答数: 0
数学 高校生

高校数学対数です。(2)の解答で、なぜ不等式は〜のところでlogをとって真数だけの不等式にしないのですか?また、(3)は全然分かりません。解説お願いします!

解答 61 W 基本例 (1) logo.3(2-x)≧logo.3(x+14) 00000 295 例題 184 対数不等式の解法 次の不等式を解け。 (2) log2(x-2)<1+log/(x-4) (2)神戸薬大, (3) 福島大] 基本 182 183 重要 185、 (3)(10gzx-10g24x>0 指針 対数に変数を含む不等式 (対数不等式) も, 方程式と同じ方針で進める。 まず,真数>0 と,(底に文字があれば)底>0,底≠1の条件を確認し,変形して 10gaA<10gaBなどの形を導く。 しかし、その後は a>1のとき logaA <loga B⇔A<B 大小一致 0<a<1のとき logaA <logaB⇔A>B 大小反対 のように、底αと1の大小によって、不等号の向きが変わることに要注意。 (3)10gzxについての2次不等式とみて解く。 (1)真数は正であるから, 2-x>0 かつ3x+14>0より 14 <x<2 3 ① 底 0.3は1より小さいから, 不等式より 2-x≦3x+140<a<1のとき よって x-3 ② fools+ ①,②の共通範囲を求めて -3≦x<2 (2) 真数は正であるから, x-2>0かつx-4>0より> x>4 1=log22, log/(x-4)=-log2(x-4) であるから, 不等式は log2(x-2)<10g22-10gz(x-4) ゆえに log2(x-2)+10g2(x-4)<10gz2 よって log2(x-2)(x-4)<log22 底2は1より大きいから (x-2)(x-4)<2 loga A≤loga B ⇔A≧B (不等号の向きが変わる。) 2 これから x-2<- x-4 が得られるが, 煩雑にな るので,xを含む項を左 1辺に移する。 5 5章 3対数関数 ゆえに x2-6x+6<0 よって3-√3<x<3+√3 x-6x+6=0 を解くと x>4との共通範囲を求めて (3) 真数は正であるから 4<x<3+√3 x>0 ① log24x=2+10gzxであるから,不等式は x=3±√3 また√3+3>1+3=4 (log2x)-log2x-2>0 ゆえに (logzx+1)(10gzx-2)>0 よって logzx <-1,2<logzx したがって logax<loga, log24<log2x 底2は1より大きいことと,①から0<x<12/24<x 10g2x=t とおくと t2-t-2>0 よって (t+1)(t-2)>0 練習 次の不等式を解け。 ②184 (3-x)≤0 (2) logs(x-1)+logs (x+2)≦2 p.301 EX 117

回答募集中 回答数: 0