学年

教科

質問の種類

数学 高校生

数Bの質問です! 86の(2)の問題を分かりやすく教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

2-~- [1] P(0≦x≦1.5) [2] P(0.5≦x≦1) (2)(x)=1- ( 基本 85 めよ。 x (0≤x≤2) [1] P(0.45XS1.2) [2] P(0.5≤x≤1.8) 確率変数 Zが標準正規分布 N (0, 1) に従うとき, 次の確率を求 P(0≤Z≤3) P(-1≤Z≤2) (2) P(1≤Z≤3) (5) P(ZZ-2) (3)P(Z1) 基本 86 よ。 確率変数X が正規分布 N(10,52) に従うとき、次の確率を求め (1) P(X≦10) (2) P(10≦x≦25) (4) P(X≧20) (5) P(X ≤16) (3) P(5X15) テーマ 37 正規分布の利用 応用 ある市の男子高校生500人の身長の平均は170.0cm,標準偏差は5.5cm である。 身長の分布を正規分布とみなすとき,次の問いに答えよ。 (1) 身長が180cm 以上の男子は約何人いるか。 (2) 身長が165cmの男子は,500人中の高い方から約何番目か。小数第1 位を四捨五入して答えよ。 考え方 身長をX, m=170.0, a=5.5 として,Z= 第2章 統計的な推測 解答編 -123 B5 (1) P(03)=P(3)=0.49865 (2) P(1SZS3)=p(3)-(1) 0.49865-0.3413=0.15735 (3) P(Z≧1)=0.5-(1)=0.5-0.3413=0.1587 (4) P-152≤2) 204 =P(-1≤ZS0)+P(OZ≦2) =p(1)+p(2)=0.3413+0.4772=0.8185 (5) P(ZZ-2)=P(-23Z30) +0.5 (2)+0.5 800x0.4772+0.5-0.9772 86ZX-10 とおくとは標準正規分布 N(0.1) に従う。 出 (1)X10 のとき z=10-10 =0 よって 5 P(X≤10)=P(Z≦0) = 0.5 (2) X10 のとき 20, X=25のとき Z- よって 25-10-3 P(10 X≤25) P(0≤Z≤3) =p(3)0.49865 5-10 (3) X=5のとき Z= =-1,5 X=15 のとき 2= 15-10 よって P(5SX≦15)=P(−1≤Z≤1) =P(-1SZS0)+P(0≤Z≦1) =2p(1)=2x0.3413=0.6826 数学B 基本練習 正規分布表 -p (w) .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0359 0.0675 0.0714 0.1103 0.0753 0.1141 0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.1 0.0398 0.0438 0.0478 0.0517 0.0636 0.0557 0.0596 0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1064 0.1026 0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 20.1517 0.4 0.1554 0.1591 0.1628 0.1664 0.1879 0.1736 0.1700 0.1844 0.1772 0.1808 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 1.0 0.3413 0.3438 0.3461 0.2823 0.2794 0.2764 0.2852 0.4177 0.4319 0.4441 0.4761 0.4767 0.4162 0.4147 0.4279 0.4292 0.4306 0.4394 0.4406 0.4418 0.4429 1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0:4699 0.4706 1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 2.6 0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643 2.7 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.49728 0.49736 2.8 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807 2.9 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861 3.0 0.49865 0.49869 0.49874 0.49878 0.49882 0.49886 0.49889 0.49893 0.49897 0.49900 1.5 0.4332 0.4345 0.4357 0.4370 0.4382 解答 身長をXcm とする。 確率変数X が正規分布 N (170.0 5.5) に従うと き, z=X-170.0 X-mを考える。 (4) X=20 のとき Z= よって 20-10 5 =2 5.5 は標準正規分布 N (0, 1) に従う。 (1) X=180 のとき, Z=- 180-170.0 (5) X=16 のとき Z= よって PX≧20)=PZ2)=0.5-p(2) =0.5-0.4772=0.0228 16-10-12 2457.19 5.5 ≒1.82 であるから 500×0.0344=17.2 であるから P(X≧180)=P(Z≧1.82)=0.5-p(1.82)=0.5-0.4656=0.0344 P(X16)=P(Z1.2)=0.5+P(0≤ 1.2) = 0.5+p(1.2) = 0.5 0.3849 =0.8849 約 17人 答 87 得点を X点とする。 確率変数X が正規分布 (2) X=165 のとき Z=- 165-170.0 X-56 5.5 ≒0.91 であるから N(56, 124) に従うとき,Z=- は標準正規 12 P(X≧165)=P(Z≧-0.91)=p(0.91)+0.5=0.3186+0.5=0.8186 分布 N(0, 1)に従う。 80-56 500×0.8186=409.3 であるから 約 409 番目 答 (1) X=80 のとき Z= =2 12 よって P(X280)=P(Z2)=0.5-p(2) =0.5-0.4772=0.0228

解決済み 回答数: 1
数学 高校生

数Bです。 正規分布表で0.4950に近いやつは画像の赤丸のうちどちらですか??

[資料2] 止 YA ・カ (2) -u O u 2 .03 .04 .05 .06 .07 67 .08 .09 .02 16 .00 .01 0.0040 0.0 0.0000 0.0557 0.0517 0.0438 0.0478 0.1 0.0398 0.0948 0.0871 0.0910 0.2 0.0793 0.0832 0.1331 0.1293 0.3 0.1179 0.1217 0.1255 0.1700 0.1664 0.1628 0.1591 0.4 0.1554 10.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.0596 0.1026 0.0987 0.1368 0.1736 0.0636 0.0675 0.1064 0.0714 0.0753 0.1103 0.1406 0.1443 0.1141 0.1772 0.1808 0.1844 0.1480 10.1517 0.1879 20.5 0.1915 10.1950 10.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 20.6 0.2257 0.7 0.2580 0.8 0.2881 0.9 0.3159 0.2324 0.2291 0.2642 0.2611 0.2939 10.2910 0.3212 0.3186 10.2357 0.2389 0.2422 0.2454 10.2486 0.2517 0.2549 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 20.2852 10.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 20.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 0.3665 1.1 0.3643 0.3686 0.3708 1.2 0.3849 0.3869 0.3888 0.3907 0.3925 1.3 0.4032 0.4049 0.4066 0.4082 0.4099 1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.3729 0.4505 0.4599 0.4678 0.4744 0.4515 0.4525 0.4535 0.4545 0.4608 0.4616 0.4625 0.4633 0.4686 0.4693 0.4699 0.4706 0.4750 0.4756 0.4761 0.4767 2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 2.1 0.4821 0.4826 0.4830 0.4834 0.4838 2.2 0.4861 0.4864 0.4868 0.4871 0.4875 2.3 0.4893 0.4896 0.4898 0.4901 2.4 0.4918 0.4920 0.4922 0.4925 0.4842 0.4878 0.4846 0.4850 0.4854 0.4857 0.4881 0.4884 0.4887 0.4890 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 0.4932 0.4934 0.4936 2.5 0.4938 0.4940 1.5 0.4332 0.4345 0.4357 0.4370 0.4382 1.6 0.4452 0.4463 0.4474 0.4484 0.4495 1.7 0.4554 0.4564 0.4573 0.4582 0.4591 1.8 0.4641 0.4649 0.4656 0.4664 0.4671 1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.3790 20.3810 0.3830 0.3962 0.3980 0.3997 0.4015 0.4131 0.4147 0.4162 0.4177 0.4265 0.4279 0.4292 0.4306 0.4319 0.4406 0.4418 0.4429 0.4441 0.4394 0.3749 0.3770 0.3944 0.4115 0.4941 0.4943 0.4927 0.4929 0.4931 0.4945 0.4946 0.4948 0.4949 0.495100.4952 2.6 0.495340.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643 2.7 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.497280.49736 2.8 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807 2.9 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861 3.0 0.49865 0.49869 0.49874 0.49878 0.49882 0.49886049888 0498930.498970.49900/

解決済み 回答数: 1
数学 高校生

確率統計についての質問です。写真で青マーカーを引いた>がなぜ出てくるくるのかわかりません。さらに、下にある紫のアンダーラインを引いた式もどうやって出したのかわからず、成り立つ意味もわかりません。どなたか教えてください。

6 mm ruled x Sh 2 正規分布 (615) B2-23 **** =56, 標準 優はおよ 例題 ■ B2.10 二項分布と正規分布 (1) **** ある植物の種の発芽率は60% である。この種を600個まくとする. (1) 発芽した種の数 X 340 以上となる確率を求めよ (2) 発芽した種の数が Y≧α の範囲にある確率が0.7以上となるよ うな整数αの最大値を求めよ。 君の成績 B600.2号)に従う. 考え方 600個の種をまき 1個の種が発芽する確率は、 100 60 3 5 であるから,Xは二項分布 第9章 Z 解答 (1)標準正規分布曲線は直線 x=0 に関して対称なグラフであるから,たとえば,確 P(Z≧-1.2)の値は,P(0≦Z≤1.2) +0.5 で求める. (2) P(zza a-360 ≧0.7=0.5+0.2より、α-3600 で Plosz_a 12 となるαの最大値を求める. 600 個の種をまき,発芽率は1/3であるから,Xは二項分布 B600.22) に従う。 5 a-360 ≥0.2 UTC+12 X-600x23 そ よって, Z=- 2点以上 600×3×(1-3) 分 X-360 とおくとZの Xが二項分布 12 B(n, p)に従うとき、 ある. -m=1.5 分布は標準正規分布 N (0, 1) とみなせる。 (1)P(X≧340)=PZ≧ 340-360 nが大きければ, X-np P(ZZ-1.67) Z= (q=1-p) √npa 12 =0.4525+0.5=0.9525 は、ほぼ標準正規分布 したがって、求める確率は, 0.9525 N(0, 1)に従う. 12 ≧0.7=0.5+0.2 2 138 1002 Z 0.20.5 Y-360 12 a-360 12 20.2 -0.520 12 であるから, a-360 12 したがって, α の最大値は, 353 Focus (2) P(a)=Pzza-360 PZ-360)>0.5より。 12 Posz≤-a-260 -> 0.52 より, a<353.76 P (0≤Z≤0.52) =0.1985 P(0≦Z≤ 0.53) =0.2019 YA 54 練習 二項分布 B(n, p)に従う確率変数Xの 平均m=np, 標準偏差 o=√np (l-p) 1問あたりの正答率が0.8である問題を400問解答し,その正答数をX とする. B1 B2 C1 ➡.B2-25 11 12 C2 B2.10 X≤α の範囲にある確率が0.4以下となるような整数αの最大値を求めよ。 **

解決済み 回答数: 1
数学 高校生

赤いマーカーの部分なんですが、なぜ0.53ではないのでしょうか。分布の半分より左の部分は0.2以上でなきゃいけないので、確実に0.2より大きくなるZの値は0.53以上ではないのかと考えました…!

例題 B2.10 二項分布と正規分布 (1) **** ある植物の種の発芽率は60% である. この種を600個まくとする. (1) 発芽した種の数 Xが340 以上となる確率を求めよ。 (2) 発芽した種の数 Y が Y≧α の範囲にある確率が0.7以上となるよ うな整数αの最大値を求めよ. 考え方 600個の種をまき 1個の種が発芽する確率は, 100 5 B600.22 に従う. 60 3 第2章 であるから,Xは二項分布 (1) 標準正規分布曲線は直線 x=0 に関して対称なグラフであるから,たとえば,確 率 P(Z-1.2) の値は,P(0≦Z≦1.2) +0.5 で求める. (2) P(zza a-360 a-360 0.70.5+0.2 より α-360 <0 で, 12 12 10.2 となるαの最大値を求める . 421 だけ 解答 600 個の種をまき,発芽率は 2.2 であるから,Xは二項分布 B600.23)に従う. 3 X-600X 5 X-360 よって, Z= とおくと, Zの X が二項分布 √600×3×(1-3) 12 B(n, p) に従うとき, (1) P(X≧340)=P Z≧ 340-360 12 したがって、求める確率は, (2) P(Y≧α)=PZ≧ ≧0.7=0.5+0.2 0.9525 a-360 001-X8 =P(zza-360) P(Z≥ a-360)>0.5 ± 1. 12 P0≤Z< 分布は標準正規分布 N (0, 1) とみなせるonが大きければ, X-np - (q=1-p) は、ほぼ標準正規分布 N(0, 1)に従う. ≒P(Z≧-1.67) =0.4525+0.5=0.9525 YA 12 Z Y-360 a-360 より, 10.2 12 12 P (0≦Z≦0.52) α-360 ≥0.2 -0.52|0 12 であるから, >0.52 より, したがって, αの最大値は, 353 a-360 12 =0.1985 P(0≦Z≦0.53) a<353.76 =0.2019 cus 二項分布 B(n, p) に従う確率変数Xの 平均m=np, 標準偏差 o=√np (l-p)

解決済み 回答数: 1