学年

教科

質問の種類

数学 高校生

Oを始点として変形するところまではいつもの流れでできたのですが、その下からなんでORやO Qが解答のように表すことができるのかが理解できません。 教えてください。

620 例題 337 例題 371 四面体の内部の 1辺の長さが1の正四面体OABC の内部に点 P があり, 等式 20P + AP + 2BP+3CP = 0 が成り立っている。 思考プロセス (1) 直線 OP と底面ABCの交点を Q, 直線AQ と辺BCの交点をRとす るとき, BR: RC, AQ: QR, OP:PQ を求めよ。 nosa (2) 4つの四面体 PABC, POBC, POCA, POAB の体積比を求めよ。 (3) 線分 OP の長さを求めよ。 0 MAGNA 2016年10 (1),(2) 例題 337 の内容を空間に拡張した問題である。 基準を定める 求めるものの言い換え NINACA BR: RC OR AQ: QROQ どこにあるか分からない点Pは基準にしにくい。 08 HA 始点を0とし、3つのベクトル OA, OB, OC で OP を表す。 OP: PQ OP OP = 201 = 1/12 08 OR = OA + 20B + 30C 8 na+mb ReAction p=na+mb l, p = (m+n)- m+n (1) 20P+AP+2BP+3CP = 0 kh 2OP+ (OP-OA) + 2(OP-OB) + 3(OP-OC) = 0 ①より 80P = OA + 2OB + 30C よって 3 4 OA+5X △OB + OOC O+A X' △OA + O OR O+A OA+5X OQ 20B + 3OC 5 20B+30C 5 OB-00-00. 10 んでここが ORに? OP = =OQ >2OB + 30C 5 A OQ= = OA+50R " X 0= (8) (3) 6 B 3点 0, P, Qは一直線上にあり, 点Qは AR 上, 点Rは BC上の点であるから 1-HO Q① OP △OA + O OR O+ △ A OA+OX SICH SP4 C ARIONSAN 1108 3 200 4 したがって BR: RC = 3:2, AQ: QR = 5:1, OP:PQ = 3:1 CHA AOB+O OČ O+A GO+A HA ta と変形せよ 8 の形に導く。 8 3 4 始点を0とするベクトル 直し OP を表す。 +w+8){ 例題 337 (OA+50R) x6x OA+50R 6 XOQO DHA 000 RAJ ②

回答募集中 回答数: 0
数学 高校生

φ-θの取りうる値の範囲はどのように決めるのでしょうか?

441 2つの円C: (x-1)2+y2=1 と D : (x+2)2+y2 = 72 を考える。 また原点を O(0,0)とする。 このとき、次の問に答えよ。 2016年度 〔2〕 Level A (1) 円 C上に,y座標が正であるような点Pをとり,x軸の正の部分と線分 OP の なす角を0とする。このとき,点Pの座標と線分 OP の長さを 0 を用いて表せ。 (2)(1)でとった点 P を固定したまま,点Qが円D上を動くとき、△OPQ の面積が 最大になるときのQの座標を0を用いて表せ。 (3) 点Pが円C上を動き, 点Qが円D上を動くとき, △OPQ の面積の最大値を求 めよ。 ただし(2),(3)においては,3点O,P,Qが同一直線上にあるときは,△OPQの 面積は0であるとする。 解法 1 イント JC上にある点P, 円 D上にある点Qを考えるのであるから, そのパラメ ータ表示には, 三角関数を用いるのが自然である。これに, 三角形の面積の公式 OE = (x1,y1), OF = (x2, y2) とするとき △OEF= ===—=—=12²₁3 -|X1Y2—X2Y1| を用いて面積を表すことができれば、あとは微分法によればよい。 本題では,2点P, Q が動くとき, 「まず1点Pを固定する」という基本的な考え方 が誘導されている。 〔解法1] では,厳密に論証を重ねながら計算を進めるが,直観的には (1), (2)の結果は ほぼ明らかである。 点Pは第1象限に限られているので, 三角比の問題として処理で きるからである。 〔解法2〕では,この方針で(1), (2) を解答する。 π (1) 円Cの中心をAとおくと, A (1, 0) である。 また,0は0<8<- の範囲にあ

回答募集中 回答数: 0
数学 高校生

(2)の問題です アとエの確率が1/6なのですが 2回の試行でアとエのとき 1/6×1/6に2c1もかけるのはなぜですか ア→エとエ→アの順番の違いですか?

51 模試 場合の数と確率 2個,合計4個の球が入っている。 この袋の中から同時に2個の球を取り出し, 取り出した2個の 座標平面上を動く点Pがあり, 最初, 点Pは原点にある。 袋の中に赤球1個,白球1個,青球 球によって, 以下の規則にしたがって点Pを移動させ, 取り出した2個の球を袋に戻すまでを1 回の試行とする。 [規則〕 取り出した2個の球が (ア) 赤球,白球のとき x軸の正の方向にも,y軸の正の方向にも1だけ移動させる。 (イ) 赤球、青球のとき y軸方向には移動させない。 x軸の正の方向に1だけ移動させ,y (ウ)青球,白球のとき x 軸方向には移動させないで,y軸の正の方向に1だけ移動させる。 青球、青球のとき x 軸方向にも,y 軸方向にも移動させない。 (1) 2回の試行の後, P点 (22) にある確率を求めよ。 (2) 2回の試行の後, P (11) にある確率を求めよ。 点 (3)3回の試行の後に,Pが点 (21) にある確率を求めよ。また,3回の試行の後にPが点 (2, 1) にあるとき,2回の試行の後にPが点(1, 1) にあった条件付き確率を求めよ。 10 ri ②2率4C2=6 cha (2016年度 進研模試 2年11月 数学A)

解決済み 回答数: 1