学年

教科

質問の種類

数学 高校生

二枚目の赤丸のとこの考え方ってなんのために使ってるんですか?

1 数と式 1 式の値 太郎さんと花子さんは, 問題1と問題2について話している。 ア めよ。 チコに当てはまる数を求 こう解く! 問題 1 を求めよ。 2次方程式 4x+1=0 • ①の二つの解のうち、大きい方をするとき、2-4a+5の値 花子αは方程式 ①の解だから a²-4a+5 (a2-4a+1)+ とすると楽に計算できるよ。 太郎:αの値を求めてから4α+5 に代入すると計算が多くなりそうだね。 1 STEP 方程式の解の意味を押さえよ う 方程式の解は等式を成り立た せる値である。 ①の右辺が0 であることに着目して、求め る式を変形することを考える。 問題2 b= 35のとき、次の式の値を求めよ。 (1) 62+96+1 (2) 63+562+46 太郎: (26+3)イより,bは方程式 ー =0 の解だから (1) は 62+96+1=(62+ウ b+エ)+オ b ■カキ ■ク ■ケ と計算したよ。 (中略) 花子:私は,(2)で違う解き方をしたよ。 +b+エ=0から より 63= 6+ チ ......③ (2)の式に② ③を代入して計算したよ。 数と式 STEP 式の形に着目し, 構想を立て よう 「(bの1次式)=(平方根)」に 変形して両辺を平方すること で, STEP 1の考え方に帰着 できる。 太郎さんと花子さん の解法は少し異なるが,とも に求める式の次数を低くして いる。 No. 解答 問題1について x = q は, 方程式x4x+1=0の解であるから a²-4a+1=0 A が成り立つ。この式の利用を考えると a²-4a+5=(a²-4a+1)+4 B 問題2について =0+4=4 〔太郎さんの解き方〕 6=3+√5 より 2 CA xα 方程式 f(x) = 0 の解の とき B f(a)=0 α-4a+1のカタマリを作り出す。 26=-3+√5 26+3=√5 両辺を平方して (2b+3)=5 46+126+9=5 1 Date C 右辺が平方根だけになるように 変形する。 -3bt x 3: t

解決済み 回答数: 1
数学 高校生

この極大値と極小値求めてるやつって、どこに代入してるんですかー、? 全然同じ数字になりません

72 定積分で表された関数の極値と最大 (1) f(x) = ∫(-3t+2at+3b) dt の両辺をxで微分して -1 f(x)=3x²+2ax+3b A (2)関数 f(x) は x=-1 および x=3 で極値をとるから, f'(x) = 0 は A a を定数とするとき, xで微分すると,g(x)となる ⒷB f(x)=0 が関数 f(x)が で極値をもつための必要 あることを利用する。 x=-1, 3を解にもつ。 ← B 3a a =-1+3 解と係数の関係により -b=(-1)x3 これより α = 3,b=3 このとき f(x)=3x²+6x+9=-3(x+1)(x-3) また f(x)=(3+6t+9)dt = |-c+30°+9t_ 3t2. -1 =-x+3x2+9x+5 であるから, 関数 f(x) の増減表は次のようになり, x=-1 および x=3で極値をとり、適する。 C したがって a=31, b=31 X -1 ... 3 ... f'(x) 0 + 0 極小 f(x) 7 極大 D 0 32 ☆ よって, f(x)は,x=3のとき極大値5をとり, x=-1 のとき極小値」2 a=3,b=3 が十分条件でお ことを確かめた。 D a 定数とするとき Lg (0) dt = 0 a,b,cは また、 (x-a)(x- f(x)=x となる。 ⑩ + y=f(x) a 2次方程式 f(x) 極値 O の解 以下 (1) p>0. 2次方程 の a+ ② a+ また、 の a< さらに, であることを利用して, 極 (0 (3) (2)よりy=f(x) のグラフは, 右の図 のようになる。 YA f(-1)=(-31+6+ の 32 y=f(x) =0 0≦x≦k において, M = 32 となるよ と求めてもよい。 0 0 ② a こうなんの値の範囲は≧3 Point (2) p<0. 次に,f(x) = 0(x>0) となるxの値 を求めると (1)と同 5 0 3 5 x である の -x +3x²+9x +5 = 0 x³-3x²-9x-5=0 (x+1)(x-5)=0 Point の x>0より x = 5 ( a 図り,0≦x≦において,m≧0となるようなkの値の範囲は≧52 Point 定義域が変化する関数の最大値、最小値を考えるときは,グラフをかい て考えるようにしよう。 また、3次関数 f(x) がx=αで極小 (大) 値 をとるとき,f(x)-f(a) は (x-α) で割り切れる性質を利用して,極 小 (大)値と同じ値をとる x = α以外のxの値を求めることができる。 解 合 f(x) f(x)=x 130

解決済み 回答数: 3
数学 高校生

左の写真の黄色チャートの問題ではKと aの値が出てからさらに場合分けをしているのに、右写真のフォーステでは場合分けをしていないのはなぜですか?

73 重要 例題 43 虚数を係数とする 2次方程式 00000 xの方程式(1+i)x2+(k+i)x+3+3ki=0 が実数解をもつように,実数k の値を定めよ。また,その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る (C) 基本 38 2章 DOから求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1 + i)a2+(k+i)a+3+3ki=0 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0,b=0α, kの連立方程式が得られる。 6 2次方程式の解と判別式 解答 (-8) S 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i = 0 α, kは実数であるから, a2+kα+3,a2+α+3kも実数 ①よって大] a2+ka+3=0 ...... ① a2+α+3k=0 ② ①-② から ゆえに (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって k=1 a=3&c 0=(-a)+x(E- [1] k=1 のとき ① ② はともに α+α+3=0 となる。 これを満たす実数αは存在しないから, 不適。 [2] α=3 のとき ①,②はともに 12+3k=0 となる。 ( x=α を代入する。 a+bi=0 の形に整理。 この断り書きは重要。 素数の相等。 α 2 を消去。 消去すると α-2α²-9=0 が得られ, 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 ←D=1°-4・1・3=-11 < 0 | 1:32+3k+3=0 ②:32+3+3k=0 ゆえに k=-4 [1], [2] から 求めるkの値は k=-4 実数解は x=3

解決済み 回答数: 1