学年

教科

質問の種類

数学 高校生

ヵが分かりません。 1枚目に記載してる写真を見て欲しいのですが、そこにシャーペンで書いてある①??と②??を教えて欲しいです。 なぜ成り立つのか分かりません

① 異なる素数 p q r を用いて 以上より、nが最大となるのはn=12のときであ り, n=12となるのは (i) より 23x32=72 25x3 = 96 (Ⅲ)より 22×3×5=60 22×3×7=84 2×32×5=90 であるから,全部で5個ある。 第5問 (1) APC は, △APC を点Cのまわりに時計回り に60° だけ回転移動した三角形であるから したがって AA'P'C=AAPC AP = A'P' B C (2)時計回りに回転移動する角が 60°のとき. △ACAは正三角形となるから, AA' = AC は成 り立つ。しかし、時計回りに回転移動する角が 60° でないときには,AA'ACは成り立たないこと がある。 ①④ 時計回りに回転移動する角の大きさによら ず△APC APC であるから, AC = A'C, CP=CPは成り立つ。 ②③時計回りに回転移動する角が60°のときに も, AP = AP', APPP'は成り立たないことが ある。 A'D' LAB であるから、APP ABPPは合同な正三角形 である。 よって ∠APB= ∠CQD=60°+60° = 120° ② <BPP=60° より ∠APP=60°であるから AP = BP=CQ=DQ より =1/AB = 4√3 3 1 sin 60° ? PQ=4-2BP cos60°=4- AP + BP + PQ + CQ + DQ 4√3 -4 +4 - 4/3 3 =4+4√3 A 4√3 CP = CP ② ② および P'CP = 60° より, △PCPは正三角形 であるから CP = PP' ③ よって、 ① ③より AP + BP + CP = A'P′ + BP + PP′ ④ A' P ⑤ 時計回りに回転移動する角が 60°のとき, △PCPは正三角形となるから, CP = PP'は成り 立つ。 しかし、時計回りに回転移動する角が60°で ないときには, CP = PP' は成り立たないことがあ る。 ➡0, ⑤ (3) 次の図のように, ABP を点Bのまわりに反 時計回りに 60°回転移動した三角形を A'BP/ △DQC を点Cのまわりに時計回りに 60°回転移動 した三角形を DQO とする。 P P A' B B -C A' 点Pの位置が変化すると,それに応じて点P'の 位置も変化するが, 点Bと点 A' の位置は変化し ない。 B D' よって, 2点P, P' が直線 A'B 上にあることが あれば、そのときに AP + BP + CPは最小となる。 ③ △PCPは正三角形であるから, 4点 A', P', P, Bが一直線上にあるとき ∠BPC = 180°-∠P'PC = 120° ④ ここで, △ABC は鋭角三角形であり, 内角はすべ 120° よりも小さい。 したがって、点Pは確かに △ABC の内部にある。 (1)と同様に考えて AP + BP + PQ + CQ + DQ =AP + PP + PQ + QQ + QD] であるから, 4点 P', P, Q, Q' が直線 A'D'上に あるときに AP + BP + PQ + CQ + DQ は最小と なる。 △PPB, QCQ' は正三角形であるから, 6点 A', P', P, Q, Q', D' が一直線上にあるとき AAA'BADD'C である。 さらに,正方形と正三角形の対称性より -③-9-

回答募集中 回答数: 0
数学 高校生

解答解説を作ってこいという課題を出されたのですが、全く分からず作ることができません😿 答えだけでなく解説も加えてお願いしたいです。 全問という大変なお願いをしてしまいすみません🙇🏻‍♀️

宿題数列{a} は +1=4+2 (n=1, 2, 3, ...) +a2+as=-42 第5問2枚目のマークシートの右側に解答すること あるクラスで次の宿題が出された太郎さんと花子さんがこの宿題について話している。 数列{6m} は を満たすものとする。また, 数列 (42)の初項から第n項までの和をS (n=1, 2, 3, ...) とする。 az*aitg. Q2 a2=Qit2. as=az+2. b1=1 bm+1=b+S (n=1,2,3,...) を満たすものとする。 (1) 数列 {4} の一般項と S を求めよ。 A-1 (2) T=2S(n=1,2,3, ...) とおく。 T, を求めよ。 " afidized (3)数列{bm) の一般項をもとめよ。また,-1)(n=2, 3, 4, …) を求めよ。 (4)6m (n=1,2, 3, ...) が最小となるような自然数の値を求めよ。 42-42 30146:42. 2の等差数列とわかるね。 イイとわかるね。だから, an= エ 22- オカ 太郎:まず(1) について考えよう。 ① から, 数列{m} は公差が 花子:そうだね。さらにa1+a2+αs=-42から,初項 α」が 数列 {4} の一般項は だね。 a₁ = -42-093 Qus 太郎: じゃあ, 等差数列の和の公式から Sm=n2 キク am=唄-平項 46- 701-48 a₁ = -16 だね。 (2) はどうやって解くのかな。 1 花子: 1 k=1 n(n+1)2n+1)とk=1 ケb n(n+1)の公式が使えるよ。 A=1 2 太郎: そうすると, T 1 = (n+1)シスだね。次は,(3)だ。 サ このとき

回答募集中 回答数: 0