学年

教科

質問の種類

数学 高校生

どうして②が実数解をもつことがtの範囲につながるんですか??

腰例題 122 2変数関数の最大・最小 (4) xyがx+y=2を満たすとき, 2x +yのとりうる値の最大値と最小値を一 よ。また、そのときのx, yの値を求めよ。 [類 南山大〕 基本101 条件式は文字を減らす方針でいきたいが、条件式x'+y=2から文 字を減らしても, 2x+yはx,yについての1次式であるからうま くいかない。 そこで,2x+y=tとおき, tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 →2x+y=t を y=t-2x と変形し, x2+y2=2に代入して」を消 去するとx2+ (t-2x) =2となり, xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 CHART 最大・最小 = t とおいて,実数解をもつ条件利用 見方をか 八える 203 2x+y=t とおくと y=t-2x ① これをx2+y2=2に代入すると x2+(t-2x)2=2 整理すると 5x2 -4tx+t2-2=0 ...... このxについての2次方程式② が実数解をもつための 条件は、②の判別式をDとすると D≧0 D ここで =(-2t)2-5(2-2)=-(2-10) 4 参考 実数a, b, x, y に ついて,次の不等式が成り 立つ(コーシー・シュワル ツの不等式)。 (ax+by)(a+b²)(x²+y²) [等号成立は ay=bx] この不等式にα=2,6=1 を代入することで解くこと もできる。 D≧0 から t2-10≤0 これを解いて -√10 ≤t≤√10 ✓もの範囲! -4t_2t t=±√10 のとき,D=0で,②は重解x=- 2.5 を 5 のとき, ② は ±√10 もつ。=±√10 のとき 2/10 x=± 5 ①から √10 y=± (複号同順) 5 よって 210 10 x= y= のとき最大値 10 5 x=- 2/10 5 10 y=- のとき最小値10 5x2 +4√10x+8=0 よって (√5x=2√2) 20 ゆえに x=± 2√2 2√10 √√5 ・=土・ √10 ① から y=± 5 (複号同順) 5 5 としてもよい。

解決済み 回答数: 1
数学 高校生

Pの範囲を求める時に1文字消去してやっても良いでしょうか? x=p-y (p-y)^2+(p-y)y+y^2=1 y^2-py+p^2-1=0 この判別式DがD≧0より D=p^2-4p^2+4≧0 よって... 同じ範囲は出るのですが、これで良いでしょうか?... 続きを読む

132変数関数/対称式の場合 xとyはx'+xy+y=1 を満たす実数とする. また, w=xy-x-y とする. (1) p=x+yとするとき, wをで表せ. (2)実数とりが2+xy+y2=1 を満たして動くとき,wの値のとりうる範囲を求めよ. I (大阪教育大後) の最 対称式は必ず基本対称式を用いて表せる. xとy 条件式と値域を調べる式がともに対称式の場合 の対称式の場合, x+y=u, ry=vとおけば, uと”の式に直せる. まず,条件式と値域を調べる式を u, vの式に直す.u, vの式に直すことで,x,yを消去するわけで ある.すると,消去される文字, yの条件をすべてu, に反映させなければならない. ここで, 「x, yが実数」という条件を反映させるのに, 「u, vが実数」 だけでよいのだろうか? もちろん 「x,y が実数」 ⇒ 「u, vは実数」は成り立つ。逆に, 「u, vが実数」 ⇒ 「x, y が実数」は成り立つ のだろうか? ここが問題である. 例えば,u=2,v=2となり得るのだろうか? これを調べるには, x, y を求めてみればよい. 解と係 数の関係により, u=2, v=2を満たすx,yは, 2-2t+2=0の2解である.この方程式の判別式Dに ついて, D/4=1-2<0 であるから, x, yは実数ではない. つまり 「u, vが実数」 であっても, 「x, y は 実数」とは限らないのである. x,yはf2-ut+v=0の2解であるから, x, y が実数という条件を, 判別式≧0 により, u²-4v≥0 A であ とに反映させる必要がある. この実数条件は, 忘れがちなので,とくに注意しよう. 角 (1) y と 解答 (1)x2+xy+y2=1により, (x+y)²=xy=1 ::p2-xy=1 :.xy=p2-1 まずxyをp(=x+y) で表す. 2 大 w=xy-(x+y) をpで表すと, wp-p-1 (2)まず,かの取り得る値の範囲を求める. x+y=p,xy=p2-1により, x,y tの2次方程式 t2-pt+p2-1=0 の2解である. x, y が実数である条件は, 判別式D について, D≧0 ←解と係数の関係. 本間の場合,前 文で述べたx, yの満たす方程式 t2-ut+v=0 で定 t= 2 2 よって,D=p2-4(p2-1)=4-3p20 ≤p≤ √3 √3 ……② は、2-pt+2-1=0である. 5 ①により,w=p WA 2 1 よって② において,wは= 1/2で最小,p= 2 2 √3 で最大となるから, wの値の取り得る範囲は 5 1 2√3 |2|53 2 √3 0 2|33| 12 01 ≤w≤ + 4 3 3 13 演習題 (解答は p.60) ←最大値は ① に代入して計算. MARK ST (ア),yx+y=4および≧0,y≧0を満たすとき,x-y'+x'+y'+xyの最小値 は (イ)とy 最大値は となる. (東京工科大・コンピュータ) 大値と最小値を求めよ.また,最大値と最小値を与えるx,yの値をそれぞれ求めよ. (ア) xy=t とおく . t を満たす実数とする.このとき, x2+y2+2(x+y) の最 ry+y2=9 の変域は,yを消去して tをxの関数と見ればよ (神戸学院大・リハビリ、薬) い。 46

未解決 回答数: 0
数学 高校生

Pの範囲を求める時に1文字消去してやると間違うのですが、何故なのでしょうか。 x=p-y (p-y)^2+(p-y)y+y^2=1 この判別式DがD≧0より -2≦p≦2

132変数関数/対称式の場合 xとyはx'+xy+y=1 を満たす実数とする. また, w=xy-x-y とする. (1) p=x+yとするとき, wをで表せ. (2)実数とりが2+xy+y2=1 を満たして動くとき,wの値のとりうる範囲を求めよ. I (大阪教育大後) の最 対称式は必ず基本対称式を用いて表せる. xとy 条件式と値域を調べる式がともに対称式の場合 の対称式の場合, x+y=u, ry=vとおけば, uと”の式に直せる. まず,条件式と値域を調べる式を u, vの式に直す.u, vの式に直すことで,x,yを消去するわけで ある.すると,消去される文字, yの条件をすべてu, に反映させなければならない. ここで, 「x, yが実数」という条件を反映させるのに, 「u, vが実数」 だけでよいのだろうか? もちろん 「x,y が実数」 ⇒ 「u, vは実数」は成り立つ。逆に, 「u, vが実数」 ⇒ 「x, y が実数」は成り立つ のだろうか? ここが問題である. 例えば,u=2,v=2となり得るのだろうか? これを調べるには, x, y を求めてみればよい. 解と係 数の関係により, u=2, v=2を満たすx,yは, 2-2t+2=0の2解である.この方程式の判別式Dに ついて, D/4=1-2<0 であるから, x, yは実数ではない. つまり 「u, vが実数」 であっても, 「x, y は 実数」とは限らないのである. x,yはf2-ut+v=0の2解であるから, x, y が実数という条件を, 判別式≧0 により, u²-4v≥0 A であ とに反映させる必要がある. この実数条件は, 忘れがちなので,とくに注意しよう. 角 (1) y と 解答 (1)x2+xy+y2=1により, (x+y)²=xy=1 ::p2-xy=1 :.xy=p2-1 まずxyをp(=x+y) で表す. 2 大 w=xy-(x+y) をpで表すと, wp-p-1 (2)まず,かの取り得る値の範囲を求める. x+y=p,xy=p2-1により, x,y tの2次方程式 t2-pt+p2-1=0 の2解である. x, y が実数である条件は, 判別式D について, D≧0 ←解と係数の関係. 本間の場合,前 文で述べたx, yの満たす方程式 t2-ut+v=0 で定 t= 2 2 よって,D=p2-4(p2-1)=4-3p20 ≤p≤ √3 √3 ……② は、2-pt+2-1=0である. 5 ①により,w=p WA 2 1 よって② において,wは= 1/2で最小,p= 2 2 √3 で最大となるから, wの値の取り得る範囲は 5 1 2√3 |2|53 2 √3 0 2|33| 12 01 ≤w≤ + 4 3 3 13 演習題 (解答は p.60) ←最大値は ① に代入して計算. MARK ST (ア),yx+y=4および≧0,y≧0を満たすとき,x-y'+x'+y'+xyの最小値 は (イ)とy 最大値は となる. (東京工科大・コンピュータ) 大値と最小値を求めよ.また,最大値と最小値を与えるx,yの値をそれぞれ求めよ. (ア) xy=t とおく . t を満たす実数とする.このとき, x2+y2+2(x+y) の最 ry+y2=9 の変域は,yを消去して tをxの関数と見ればよ (神戸学院大・リハビリ、薬) い。 46

未解決 回答数: 0
数学 高校生

Pの範囲を求める時に2枚目の写真のように1文字消去してやると間違うのですが、何故なのでしょうか。

132変数関数/対称式の場合 xとyはx'+xy+y=1 を満たす実数とする. また, w=xy-x-y とする. (1) p=x+yとするとき, wをで表せ. (2)実数とりが2+xy+y2=1 を満たして動くとき,wの値のとりうる範囲を求めよ. I (大阪教育大後) の最 対称式は必ず基本対称式を用いて表せる. xとy 条件式と値域を調べる式がともに対称式の場合 の対称式の場合, x+y=u, ry=vとおけば, uと”の式に直せる. まず,条件式と値域を調べる式を u, vの式に直す.u, vの式に直すことで,x,yを消去するわけで ある.すると,消去される文字, yの条件をすべてu, に反映させなければならない. ここで, 「x, yが実数」という条件を反映させるのに, 「u, vが実数」 だけでよいのだろうか? もちろん 「x,y が実数」 ⇒ 「u, vは実数」は成り立つ。逆に, 「u, vが実数」 ⇒ 「x, y が実数」は成り立つ のだろうか? ここが問題である. 例えば,u=2,v=2となり得るのだろうか? これを調べるには, x, y を求めてみればよい. 解と係 数の関係により, u=2, v=2を満たすx,yは, 2-2t+2=0の2解である.この方程式の判別式Dに ついて, D/4=1-2<0 であるから, x, yは実数ではない. つまり 「u, vが実数」 であっても, 「x, y は 実数」とは限らないのである. x,yはf2-ut+v=0の2解であるから, x, y が実数という条件を, 判別式≧0 により, u²-4v≥0 A であ とに反映させる必要がある. この実数条件は, 忘れがちなので,とくに注意しよう. 角 (1) y と 解答 (1)x2+xy+y2=1により, (x+y)²=xy=1 ::p2-xy=1 :.xy=p2-1 まずxyをp(=x+y) で表す. 2 大 w=xy-(x+y) をpで表すと, wp-p-1 (2)まず,かの取り得る値の範囲を求める. x+y=p,xy=p2-1により, x,y tの2次方程式 t2-pt+p2-1=0 の2解である. x, y が実数である条件は, 判別式D について, D≧0 ←解と係数の関係. 本間の場合,前 文で述べたx, yの満たす方程式 t2-ut+v=0 で定 t= 2 2 よって,D=p2-4(p2-1)=4-3p20 ≤p≤ √3 √3 ……② は、2-pt+2-1=0である. 5 ①により,w=p WA 2 1 よって② において,wは= 1/2で最小,p= 2 2 √3 で最大となるから, wの値の取り得る範囲は 5 1 2√3 |2|53 2 √3 0 2|33| 12 01 ≤w≤ + 4 3 3 13 演習題 (解答は p.60) ←最大値は ① に代入して計算. MARK ST (ア),yx+y=4および≧0,y≧0を満たすとき,x-y'+x'+y'+xyの最小値 は (イ)とy 最大値は となる. (東京工科大・コンピュータ) 大値と最小値を求めよ.また,最大値と最小値を与えるx,yの値をそれぞれ求めよ. (ア) xy=t とおく . t を満たす実数とする.このとき, x2+y2+2(x+y) の最 ry+y2=9 の変域は,yを消去して tをxの関数と見ればよ (神戸学院大・リハビリ、薬) い。 46

未解決 回答数: 0
数学 高校生

(イ)は(ア)とは違い逆像法で解いています。 結局どちらの問題もxとyの関係式を代入して文字を減らしています。 違いはなんでしょうか。 二次関数の問題において、(他の問題でも同じことが言えるのかもしれませんが…)逆像法じゃなきゃ解けない問題ってどう判断するんでしょうか。

t 122変数関数 / 等式の条件が2次式の場合 実数エリが+=1をみたすとき,'+4yは(x,y)= とり(x,y)=(,)のとき最小値 )のとき最大値 実数エリがェー2zy+2g2=8 を満たすとき,x+yの最大値と最小値を求めよ. をとる. (東海大・理, エ ( 名古屋学院大 (7719123 角入し 7 この先回ら #4 等式の条件が2次の場合 (ア)の場合,1-y2としてェを消去すれば前間と同様に解ける。こ こで,xの範囲に制限がないから,yに反映させる条件はない。とすると大間違いである。 例えばy=2 とすると, r2=-3となるがこれを満たす実数ェは存在しない! つまり、エが実数であるための条件≧0をリに反映させる必要がある。 (zが実数で存在する条件) 一方、(イ)の場合、無理に1文字を消去してェをリで表せば,r=y±√8-y2というやっかいなもの が登場してしまう.こんなときは、次の手法が威力を発揮する。 (「大学への数学」 では “逆手流” と呼 んでいる) かて f(x,y)=0のとき,g(x, y) の取り得る値の範囲 I を求めるとする. ある値kについて, kがIの範囲に入る 「f(x,y)=0かつg(x,y)=kを満たす実数x, y が存在する」 本間の場合、f(x,y)=x²-2xy+2y2-8, g(x,y)=x+yであり,「 」 から得られるkの条件 (範囲)がIになるわけである.なお,逆手流については、詳しくは 66. 解答量 (ア)+y2=1により, r2=1-y2 存在条件に →Dしかない (ア)有在条件(イ)有不 1次へ xxの ェの実数条件. な お,r'+y2=1 は 右図の単位円を 表すことからも 34 2-7 1 20 であるから, 1-y2≧0 ..-1≤y≤1 このとき,'+4y=(1-y2)+4y=-(y-2)2+5 よって, y=1 (このときx=0) のとき最大値 4 y=-1 (このときx=0)のとき最小値 4 (xtyがんという実数値を取り得る. ←xty=kかつェー2xy+2y2=8 を満たす実数工y が存在する。 -1≦y≦1が分かる. ①る+300-8- ② 2ェ(k-1)+2(k-1) 2=8 ① (y=k-ェ・・・・・・②) を満たす実数が存在する。 ここで, ①を整理すると, 52-6kr+2k2-8=0 ②を使って”を消去.なお, ェが 実数なら②から」が実数である から が言える. これを満たす実数ェが存在するための条件は,上式をェの2次方程式と見たと 少なくとも1つ実数解を持たな きの判別式をDとすると, D≧0であるから, ければならない。 その条件は DZO. D/4-(3k)2-5(2k2-8)≥0 .. k²≤40 .. -2√10 ≤ k ≤2√/10 よって,xtyの最大値は2/10 最小値は2/10 である. 12 演習題(解答は p.59) (ア) エリが+2y2=1 をみたすとき2x+3y2の最大値は [ である. で,最小値は [ ( 明海大歯) (イ) (1) 実数エリがry+y-y-1=0をみたすとき, yの最大値は[ 最小値は □である。 ]で, (愛知工大) (ア) 実数条件を忘れな (2) 実数x、yがェー2x+y=1を満たすとき,x+yの最大値は [ である. 最小値は いように、 ( 広島工大) (イ) 逆手流を使う. 解答のか 45 ¥4

解決済み 回答数: 1
数学 高校生

最大最小問題の解き方は、グラフを描く以外に (ア)みたいに( )^2の形を作るというのはよくあるパターンですか? その解き方のメリットとデメリットはなんですか?

1/12 #16 2:30 11 2 変数関数等式の条件がない場合,ある場合 (ア) (1) エリの関数P='+3 +4 - 6y+2の最小値を求めよ. また,そのときのェリの値 を示せ. 2)0x3.0Sys3のとき (1) の関数Pの最大値および最小値を求めよ. また,それぞれ の場合のェyの値を示せ. (3)エリの関数Q6ry +10g²-2x+2y+2の最小値を求めよ. また,そのときのエリ の値を示せ. ( 豊橋技科大) である. x+y=1, r200のとき、2y2の最小値は [ 最大値は (関西大理工系,改題) の2次の2変数関数 変数が2個以上あっても、等式の条件などなくてそれぞれ独立に(無関 に) 動けるとき,平方完成によって2次式で表された関数の最大・最小値を求めることができる.具 体的には、の2次式があるとき、まずその2次式をェの式と考えて (yは定数と見なす) 整理し, 平方完成する。 すると定数項はェを含まない」の式(2次式)で、それをリについて平方完成する。 等式の条件 1次の等式の条件が1個与えられたら, それを使ってどれか1文字を消去するのが原 則的な手法である。 (イ)の場合、等式の条件からェをで表すことができる. この際 (イ)☆消去される文字ェについている条件(20) に反映させるこのc ことを忘れないように,結局, (イ)は見かけは2変数関数であるが、実質的には1変数関数にすぎない。 解答() () ()のお =02121 23-00 p-table まずェについて整理 ⇒因に?ちがうする (ア) (1) P=x2 +4 +3y2-6y+2 =(x+2)2+3g2-6y-2=(x+2)243(y-193-5 これはx=-2,g=1のとき最小値5をとる Pa (2) ① は, x+2」が大きいほど, y-1が大きいほど大きい。よって 3 y=3のとき最大となり, 最大値は 3のとき,①はx=3, 52+3・22-5=32である. また, x=0 y=1のとき最小となり,最小値は 2-5=-1である。 (3) Q=2-2(3y+1)x+10y2+2y+2 =(x-(3y+1))-(3y+1)²+10y²+2y+2 0 ={z-(3y+1))2+y2-4y+1={(3y+1)+(y-2)2-3 y-2=0 かつェ= 3y +1, すなわち,y=2,x=7のときに最小値-3をとる (イ)x+y=1により,r=1-yx20,420により,Osysl x-2y2=1-g-2y=-2(y+1+1/ これは①のとき,y=1で最小値1-1-2=-2,y=0で最大値1をとる. 11 演習題(解答は p.59) まずェについて整理 ①ェを消去した方が、少しラク. 1-g-2y2に代入. w 実数x, y, zの間にx+2y+3z=7という関係があるとき,+y'+2の最小値 と、そのときのエリ, zの値を求めよ. (早大 人間科学) (イ) (1) +2y=10のとき,'+y2の最小値とそのときのx、yの値を求めよ。 (2) g (x)=15-50 とする. +2y=100,120 のとき, 2g(x)+g(x)の最大値、最小値とそのときのz,yの値を求めよ. 44 条件 しっかり (尾道大) (ア)(イ)とも1文字消去 をする。

解決済み 回答数: 1
数学 高校生

逆像法と順像法について。もし例題(ア)でx^2+4yではなく、x+4yという問題だったら、 (イ)と同じように xの値に±付きのルートが出てきて面倒なので、逆像法で解くということですか?

12 2変数関数/等式の条件が2次式の場合 (ア) 実数x,yがx'+y2 =1をみたすとき,r'+4yは(x,y)=(, をとり、(x,y)=(¯□¯)のとき最小値 |をとる. ■ のとき最大値 (東海大理工) (イ) 実数x,yがx-2xy+2y2=8を満たすとき, x+yの最大値と最小値を求めよ。 (名古屋学院大, 一部省略) 「等式の条件が2次の場合 (ア)の場合,1-y2としてェを消去すれば前問と同様に解ける.こ 実をもつまらな こでの範囲に制限がないから, yに反映させる条件はない, とすると大間違いである。 例えばy=2 とすると, z=-3となるがこれを満たす実数æは存在しない! つまり,ェが実数であるための条件220 を」に反映させる必要がある. (z が実数で存在する条件) 実数が一方, (イ)の場合、無理に1文字を消去して』をyで表せば,r=y±√8-y2というやっかいなもの が登場してしまう。こんなときは,次の手法が威力を発揮する. (「大学への数学」では“逆手流” と呼 んでいる) すま の地で さかて f(x, y) =0のとき,g(x,y)の取り得る値の範囲 I を求めるとする. ある値kについて, kがIの範囲に入る⇔ 「f(x, y) =0かつg (x, y) = k を満たす実数x, y が存在する」 本間の場合, f (x,y)=x²-2xy+2y2-8, g(x,y)=x+yであり,「」 から得られる kの条件 (範囲) がIになるわけである.なお, 逆手流については、詳しくは p.66. 解答 存在条件に (ア)存在条件(イ)有 Dしかない 次へ 実 (ア) '+y2=1により, r=1-y2 x 2 0 であるから, 1-y2≧0 .. -1≤y≤1 このとき,'+4y=(1-y2)+4y=-(y-2)2+5 よって, y=1 (このときx=0) のとき最大値 4 y=-1 (このときょ=0) のとき最小値 4 (イ) x+yがんという実数値を取り得る. ⇔rty=kかつ2ry+2y2=8 を満たす実数x, y が存在する。 ⇔-2ェ (k-x)+2(k-x)=8① (y=k-π・・・・・ ②) を満たす実数x が存在する. ここで, ①を整理すると, 52-6kr+2k2-8=0 ェの実数条件. な お,r'+y2=1は 右図の単位円を 表すことからも -1≦y≦1 が分かる. 1 〒1 並ん [② ②を使ってyを消去. なお,エが 実数なら②からが実数である から, が言える. これを満たす実数x が存在するための条件は,上式を2次方程式と見たと 少なくとも1つ実数解を持たな きの判別式をDとすると, D≧0であるから, D/4=(3k)2-5(2k2-80 .. k²≤40 ければならない. その条件は D.20. ..-2/10 ≦k≦2/10 よって、xtyの最大値は2/10 最小値は2/10 である。 D 12 演習題(解答はp.59) (ア),yが2+2y2=1 をみたすとき, 2x+3y2の最大値は [ である. ]で,最小値は (明海大 歯) (イ) (1) 実数x、yがェーry+y"-y-1=0 をみたすとき, yの最大値は 最小値は である. で. (愛知工大) (2) 実数ェリがェー2x+y=1を満たすとき,rtyの最大値は [ 最小値は (ア) 実数条件を忘れな いように. ( 広島工大) (イ) 逆手流を使う. である. 解答のかき方応 45 逆手流の逆像法 みる の 大阪

解決済み 回答数: 1