数学
高校生
解決済み

逆像法と順像法について。もし例題(ア)でx^2+4yではなく、x+4yという問題だったら、
(イ)と同じように
xの値に±付きのルートが出てきて面倒なので、逆像法で解くということですか?

12 2変数関数/等式の条件が2次式の場合 (ア) 実数x,yがx'+y2 =1をみたすとき,r'+4yは(x,y)=(, をとり、(x,y)=(¯□¯)のとき最小値 |をとる. ■ のとき最大値 (東海大理工) (イ) 実数x,yがx-2xy+2y2=8を満たすとき, x+yの最大値と最小値を求めよ。 (名古屋学院大, 一部省略) 「等式の条件が2次の場合 (ア)の場合,1-y2としてェを消去すれば前問と同様に解ける.こ 実をもつまらな こでの範囲に制限がないから, yに反映させる条件はない, とすると大間違いである。 例えばy=2 とすると, z=-3となるがこれを満たす実数æは存在しない! つまり,ェが実数であるための条件220 を」に反映させる必要がある. (z が実数で存在する条件) 実数が一方, (イ)の場合、無理に1文字を消去して』をyで表せば,r=y±√8-y2というやっかいなもの が登場してしまう。こんなときは,次の手法が威力を発揮する. (「大学への数学」では“逆手流” と呼 んでいる) すま の地で さかて f(x, y) =0のとき,g(x,y)の取り得る値の範囲 I を求めるとする. ある値kについて, kがIの範囲に入る⇔ 「f(x, y) =0かつg (x, y) = k を満たす実数x, y が存在する」 本間の場合, f (x,y)=x²-2xy+2y2-8, g(x,y)=x+yであり,「」 から得られる kの条件 (範囲) がIになるわけである.なお, 逆手流については、詳しくは p.66. 解答 存在条件に (ア)存在条件(イ)有 Dしかない 次へ 実 (ア) '+y2=1により, r=1-y2 x 2 0 であるから, 1-y2≧0 .. -1≤y≤1 このとき,'+4y=(1-y2)+4y=-(y-2)2+5 よって, y=1 (このときx=0) のとき最大値 4 y=-1 (このときょ=0) のとき最小値 4 (イ) x+yがんという実数値を取り得る. ⇔rty=kかつ2ry+2y2=8 を満たす実数x, y が存在する。 ⇔-2ェ (k-x)+2(k-x)=8① (y=k-π・・・・・ ②) を満たす実数x が存在する. ここで, ①を整理すると, 52-6kr+2k2-8=0 ェの実数条件. な お,r'+y2=1は 右図の単位円を 表すことからも -1≦y≦1 が分かる. 1 〒1 並ん [② ②を使ってyを消去. なお,エが 実数なら②からが実数である から, が言える. これを満たす実数x が存在するための条件は,上式を2次方程式と見たと 少なくとも1つ実数解を持たな きの判別式をDとすると, D≧0であるから, D/4=(3k)2-5(2k2-80 .. k²≤40 ければならない. その条件は D.20. ..-2/10 ≦k≦2/10 よって、xtyの最大値は2/10 最小値は2/10 である。 D 12 演習題(解答はp.59) (ア),yが2+2y2=1 をみたすとき, 2x+3y2の最大値は [ である. ]で,最小値は (明海大 歯) (イ) (1) 実数x、yがェーry+y"-y-1=0 をみたすとき, yの最大値は 最小値は である. で. (愛知工大) (2) 実数ェリがェー2x+y=1を満たすとき,rtyの最大値は [ 最小値は (ア) 実数条件を忘れな いように. ( 広島工大) (イ) 逆手流を使う. である. 解答のかき方応 45 逆手流の逆像法 みる の 大阪

回答

疑問は解決しましたか?