学年

質問の種類

数学 高校生

四角で囲ったところなんですけど、どうしてこの記述が必要なのですか?

000 重要 121 いう。 おく y+3 2 すると、 X9 重要 例題 90 2変数関数の最大・最小 (2) (1) x, y の関数P = x2 +3y'+4x-6y+2の最小値を求めよ。 (2) x, yの関数 Q=x²-2xy+2y2-2y+4x+6の最小値を求めよ。 なお,(1),(2)では, 最小値をとるときのx, yの値も示せ。 指針 [(2) 類 摂南大] 基本79 (特に条件が示されていないから,x,yは互いに関係なく値をとる変数である。 このようなときは、次のように考えるとよい。 xのうちの一方の文字(ここでは」とする)を定数と考えて,Pをまずx 2次式とみる。そして,Pを基本形α(xb)+gに変形。 ②残ったg(yの2次式)も、基本形6(y-r) '+s に変形。 ③ P=ax2+by's (a>0,b>0,sは定数)の形。 →PはX=Y=0のとき最小値sをとる。 151 →8みたいやつ (2)xyの項があるが, 方針は (1) と同じ。 Q=a{x-(by+c)}+d(y-r)'+s の形に変 逆に条件式があるってどんなの? 形。 CHART 条件式のない2変数関数 一方の文字を定数とみて処理 3章 ⑩ 2次関数の最大・最小と決定 で、代 (1) P=x2+4x+3y2-6y+2 30 O =(x+2)2-22+3y2-6y+2 まず, xについて基本形に。 解答 =(x+2)+3(y-1)2-3・12−2 次に, yについて基本形に。 =(x+2)2+3(y-1)2-5 プラフ なんのため? 三域は x, y は実数であるから 最 最小 (x+2)20, (y-1)^≧0 よって, P は x+2=0, y-1=0のとき最小となる。 ほう <P=aX2+ by +s の形。 (実数) 20 x+2=0, y-1=0 を解く と x=-2, y=1 ゆえに x=-2,y=1のとき最小値-5 (2)Q=x²-2xy+2y2-2y+4x+6 デビー2(y-2)x+2y2-246 ={x-(y-2)}2-(y-2)^+2y2-2y+6 =(x-y+2)^+y2+2y+2 =(x-y+2)^+(y+1)^-12+2 ここにxが x²+x+口の形に。 のこらないように まず, xについて基本形に。 する!! 次に, yについて基本形に。 Q=ax2+by2+s の形。 (実数) 20 =(x-y+2)+(y+1)+1 x,yは実数であるから (x-y+2)^≧0. (v+1)^≧0 よって,Qはx-y+2=0, y+1=0のとき最小とな る。x-y+2=0, y+1=0を解くとx=-3, y=-1 最小値をとるx,yの値は, ゆえに x=-3, y=-1のとき最小値1 連立方程式の解。 練習 (1) x, y の関数 P=2x2+y2-4x+10y-2の最小値を求めよ。 90 (2) r

解決済み 回答数: 1
数学 高校生

青いマーカーについて。0以上の数でも等号が成り立ちそうですが、なぜ0の時だけ考えるんですか。 また、下側にある「point 式の見方を変える」のところのようにすればx、yが実数である条件を書かなくていいのでしょうか。

消去 の利用 例題 72 2変数関数の最大・最小 宝 **** 3章 72次関数の最大・最小 思考プロセス x,y が実数の値をとりながら変化するとき,P=x-2xy+3y²-2x+10y+1 の最小値,およびそのときのx,yの値を求めよ。 例題71との違い 見方を変える 「xとyの関係式がないので, 1文字消去できない。 lxとyがそれぞれ自由に動くので考えにくい。 ① yをいったん定数とみる xの2次関数 P=x+x+□ の最小値を の式で表す。 ② (y を固定する) y を変数に戻す ( v を動かす ) =(yの式)の最小値を求める。 Action》 2変数関数の最大・最小は, 1変数のみに注目して考えよ 解 与式を x について整理すると P = x²-2xy+3y2 - 2x + 10y + 1 = x2-2(y+1)x + 3y2 + 10y + 1 にして と変形して xyは1 となった wwww xについての2次式とみ て,平方完成する。 yは 定数とみて考える。 を定数とみたときの最 小値はm=2v2+8y この最小値を考えるため、 さらに平方完成する (実数 2 ≧0 ■Pの2つの()内が ¥2変数の開 yの の範囲 になおす 120TH ②より 「すなわち のときである。 したがって これと、 x = -1, y=-2 最 x,yは実数であるから [2種)≧0] (x-y-12≧0,かつ2(y+2%≧0 970 等号が成り立つのは x-y-1 = 0 かつ y + 2 = 0 すなわち ={{x-(y+1)}-(y+1)+3y+10y +1 = =(x-y-1)2+2y2 +8y =(x-y-1)+2(y+2)2-8 である。 x=-1, y=-2 のとき 最小値-8 Point 式の見方を変える をαに置き換えて例題72を書きなおすと、次のような問題になる。 xの2次関数 y=x-2(a+1)x + 34² + 10a + 1 について (1) 最小値をαの式で表せ。 (2)αの値が変化するとき (1) で求めた最小値の最小値を求めよ。 <解〉 (1) y = {x-(a+1)}2 +2a2+8a より そのグラフは、頂点 (a+1, 2a2+8a), 下に凸の放物線であるから 最小値=2a2+80mの効きをしりた (2)m=2a2+8a=2(a+2)2-8 より mはa=2のとき,最小値-8をとる。 B KMENN 617840

解決済み 回答数: 1
数学 高校生

重要例題121についてです! なぜy2≧0(蛍光ペン引いてるところ)となるのかわかりません、なぜそう言えるのか教えてください!!

202 重要 例題 121 2変数関数の 実数x, yがx2+2y=1 を満たすとき, 1/x +y2の最大値と最小値 やよびその ときのxyの値を求めよ。 指針 p.150 例題 89 は条件式が1次だったが、2次の場合も方針は同じ。 条件式を利用して, 文字を減らす方針でいく。このとき、次の [1] 計算しやすい式になるように, 消去する文字を決める。 2点に注意。 ……ここでは、条件式を1/12 (1-x")と変形して 1/2x+ya に代入するとよい。 基本的 思い出した [2] 残った文字の変域を調べる。 2=1/12 (1-x2)で,y=0であることに注目。 ←(実数) ≧ 0 CHART 条件式 文字を減らす方針で変域に注意 x2+2y2=1から ① 解答 2≧0 であるから 1-x20 ゆえに (x+1)(x-1)≦02) よって -1≤x≤1 f(x)4 ①を代入すると 1 5 から1 1/2x+y=1/2x+ -/1/(x-/1/3+ これをf(x) とすると, ② の範囲で 2. 8 最大 x+ 2 10 5 最小 8 12 12 1 f(x)はx= x=1/2で最大値 88, x=-1で最小値 - 5 1 2 をとる。 ①から > > ―方だけが x= のとき x=-1のときy2=0 ゆえに したがって 3 1/(1-1)=1/12/26 4 y=0dd (x, y) = (1/2 土)のと 条件 =土 8 である。 のとき最大値 (x,y)=(-1, 0) のとき最小値 - 129 <消する x2 条件式はとして ともに2次 計算する式は ○xが1次, yが2次 であるから, yを消去 るしかない。 の2次式! 基本形に直す。 1 #+/(-1/2)+/ y=± ✓1/12 (1-2)

解決済み 回答数: 1
1/21