数学
高校生
解決済み

どうして②が実数解をもつことがtの範囲につながるんですか??

腰例題 122 2変数関数の最大・最小 (4) xyがx+y=2を満たすとき, 2x +yのとりうる値の最大値と最小値を一 よ。また、そのときのx, yの値を求めよ。 [類 南山大〕 基本101 条件式は文字を減らす方針でいきたいが、条件式x'+y=2から文 字を減らしても, 2x+yはx,yについての1次式であるからうま くいかない。 そこで,2x+y=tとおき, tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 →2x+y=t を y=t-2x と変形し, x2+y2=2に代入して」を消 去するとx2+ (t-2x) =2となり, xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 CHART 最大・最小 = t とおいて,実数解をもつ条件利用 見方をか 八える 203 2x+y=t とおくと y=t-2x ① これをx2+y2=2に代入すると x2+(t-2x)2=2 整理すると 5x2 -4tx+t2-2=0 ...... このxについての2次方程式② が実数解をもつための 条件は、②の判別式をDとすると D≧0 D ここで =(-2t)2-5(2-2)=-(2-10) 4 参考 実数a, b, x, y に ついて,次の不等式が成り 立つ(コーシー・シュワル ツの不等式)。 (ax+by)(a+b²)(x²+y²) [等号成立は ay=bx] この不等式にα=2,6=1 を代入することで解くこと もできる。 D≧0 から t2-10≤0 これを解いて -√10 ≤t≤√10 ✓もの範囲! -4t_2t t=±√10 のとき,D=0で,②は重解x=- 2.5 を 5 のとき, ② は ±√10 もつ。=±√10 のとき 2/10 x=± 5 ①から √10 y=± (複号同順) 5 よって 210 10 x= y= のとき最大値 10 5 x=- 2/10 5 10 y=- のとき最小値10 5x2 +4√10x+8=0 よって (√5x=2√2) 20 ゆえに x=± 2√2 2√10 √√5 ・=土・ √10 ① から y=± 5 (複号同順) 5 5 としてもよい。

回答

✨ ベストアンサー ✨

これはよい質問ですね
ただ答えるのは少し難しいです(私には

②:5x² -4tx +t²-2 = 0
が実数解xをもつような実数tの値の範囲を求めるのが目的です
つまり、実数tがある値のときは②が実数解xをもち、
実数tがまたある値のときは②が実数解xをもたないわけです

言い換えると、
②が実数解xをもつ条件を求めることで、
その実数解xに対応する実数tを求めることができます
これこそがtのとりうる値の範囲です

絶対合格

なるほどーー!!!!めっっちゃ納得しました!!
ほんとにありがとうございます✨✨

この回答にコメントする
疑問は解決しましたか?