学年

教科

質問の種類

数学 高校生

(1)(2)共になぜ微分するのか分かりません、 このような問題やったことがなくて、(微分の表し方でdX分のdYと置いたこともなかった)色々動画授業とかも見ましたが分かりませんでした、 助けてください、、

260 00000 基 本 例題 173 面積・体積の変化率 球の半径が変化するとき球の体積V,r=5における変化事を めよ。 (②2) 球形のゴム風船があり、半径が毎秒 0.5cm の割合で伸びるように数 を入れる。 半径①cmからふくらむとして、半径が5cmになったときの この風般の表面積の、時間に対する変化率(em²/s) を求めよ。 CHART OLUTION 解答 半径rの球の体積は1/3 , 表面積は4πr2. (1) V の r = 5 における変化率は,Vのr=5における微分係数である。 (2) 風船の半径と表面積を,時刻tの関数で表す。 半径が5cmのときの時刻 を求める。 [注意 どの変数で微分したのかを明示するときには, (1) 半径rの球の体積Vは dV dV dr' dt いる。 複数の変数を同時に扱う場合, V' という記号は避けた方がよい。 4 V== πr³ ちょっと単価が変わると、保証はどうかわる? V を rで微分すると dr) 3² (rª)' = 3·3r² = 4 xr² av 4 よって,r=5におけるVの変化率は 4・52=100 (2) 風船がふくらみ始めてからt秒後の風船の半径をrcm, 表面積を Scm² とすると r=0.5t ① S=4πr²=4m(0.5t)2 = rt2 ds(12)=2πt よって dt r=5 のとき, ① から 5=0.5t したがって t=10 ゆえに, t=10 におけるSの変化率は 2.10=20㎡(cm²/s) PRACTICE・・・・ 173 ③ (1) 底面の半径が 直さが OTN66103 10秒後 p.254 基本事項 秒後 0.5tcm の形の記号を用 gは定数 「時間に対する変化率」 は、表面積Sを時刻の 関数で表して、で微分 して求める。 基 面積 SO (1 解 (1)

回答募集中 回答数: 0
数学 高校生

積分の問題です。 黄色マーカーで引いたところの解説をお願いします

基礎問 125 水の問題 放物線の一部y=x² (0≦x≦2) をy軸のまわ りに1回転してできる容器 (右図) がある.ただし, 目盛り1を1cmとする. この容器の上方から, 毎 秒2cm の割合で水をゆっくりと注ぐとき、次の 問いに答えよ. (1) 水面の高さがhcmのとき (0<h≦4), 注がれ た水の体積を求めよ. 精講 ① 水が満杯になるまでにかかる時間工を求めよ. (%) 水面の高さが2cmのとき, 水面の上昇する速度を求めよ. (2) 7= (1) この容器はy軸まわりの回転体ですから 116 の公式を使 います。 容器の体積 2 で求まります. (3) 速度とは何でしょうか? 速度= YA O 距離 と習いましたが,これでは平均し 時間 た速度になってしまい, 「水面の高さが2cmのとき」 という瞬間の速度には なりません。この容器の場合, 常識的にも, 水面の高さが高くなるほど水 面はゆっくりと上がっていくはずですから, 水面の高さによって, 水面の上 昇する速度は異なります. そこで,次の性質を利用します。 速度 tで微分 tで微分 位置 tで積分 tで積分 この関係式で,「位置」って何だろうと思うかもしれませんが,y軸という 数直線上で点 (0, h) が動点と考えれば, んのことであることがわかります。 加速度 分 (積分) しなければならない点です. そして,この考え方の最大の注意点は,上の図にもあるように, 時刻tで微 v=x["x²dy=n" ydy=7³/2=7h² (cm²) (1) 単位 「cm」を忘れないように . 注 (2) 水が満杯のときの体積は (1) の結果に h=4 を代入して,87cm よって, (3) V= 1=²より、 2= πh. 参考 T= =4π (秒) dV ここで, -=2 だから dt 8π 2 ポイント dV_dvdh dt dhdt cm」 の 演習問題 125 dh dt h=2のときの速度だから, dV -= πh dh 解答 dh 1 TC 2 πh 125 において時刻 164 注1 dh 2 dt πh 確かに, 面がゆっくり上昇することを示しています。 の,すなわち, dt ◆体積が増加する速度を意味するので この問題では,2cm²/秒 (cm/秒) の値はんの値が大きくなるほど小さくなります。 号に 231 (3) で予想したように、 水深が深くなるほど, 水 の変化する速度とは 時刻で微分したも d 注 問題文の中に 「tがない」 と思う人もいるかもしれませんが 「毎秒2 中に含まれています. における水面の上昇速度をTを用いて表せ。 第6章

回答募集中 回答数: 0
数学 高校生

積分の体積の問題です 黄色マーカーで引いたところの解説をお願いします

基礎問 226 123 回転体でない体積(ⅡI) 2⑦ 次の問いに答えよ. 12 (1) 定積分 1fpdt を求めよ。 (2) 不等式 z'+y2+log (1+22) log2 ......(*) で表される立体Dにつ いて (ア) 立体Dを平面 z=tで切ることを考える. このとき, 断面が存在 するような実数十のとりうる値を求めよ. (イ)(ア)における断面積をS(t) とする. S(t) をtで表せ. 立体Dの体積Vを求めよ. (ウ) 第6章積分法 精講 (1) 分数関数の定積分は,次の手順で考えます。 ① 「分子の次数<分母の次数」 の形へ ② f(x) ③②の形でなければ、 分母の式を見て 因数分解できれば, 部分分数分解へ (89 因数分解できなければ, tan0の置換を考える (90) (2) 立体Dの形が全くわかりませんが, 122 によれば断面積を積分して求めら れます。 だから立体の形がわからなくても、断面積が求まれば体積は求めら れるのです.そのときの定積分の式を求める作業が(イ)で, 定積分の範囲を求 める作業が(ア)になっています。 1+t2 "'(x) 解 答 (1) Softpdt=f'(1-14ps) at=1-So1tradt 1+t2 ここで, Softpdt において,t=tan0 とおくと 90(1) = S₁³ do = 7 4 -dxの形を疑う (89) 1+t2 t0→1 dt TL 1 do 00-E docosey だから、∫otpad="1+lando cos2d よって,Strat=1- 1+t2 π (2) (ア) (*) z=t を代入して ²+y² ≤log2-log(1+t²) ......① この不等式をみたす実数工、リが存在するこ これが断面が存在す とから, るということ log2-log (1+t²) ≥0 2≥1+t² = 1²≤1 " -1≤t≤1 立体Dの平面 z=t (-1≦t≦1) による断面はxy平面上の不等 式①で表される図形で,これは (半径) が log2-10g(1+1)の円の (イ) 周および内部を表すので 22² +7² {/² S(t)=z{log2-log(1+t)} (→) V=r{log 2-log(1+t²)}dt =2zf"{log2-10g(1+t)}dt =2zlog2-2x(t)'log(1+t)dt =2xl0g2-2x|tlog(1+t)+ 25 24 psdt 21² =4nf1+₁ dt-4(1-4)=(1-x) 4π 1+t2 2 ポイント 演習問題 123 ◆これが z=tで切る ということ 227 <S(t) は偶関数 87 (1) 部分積分 2 注∫_{log2-log(1+t^2)}dt = f_log1fFdtと変形してしまうと 定積分は厳しくなります。 回転体でない体積の求め方は I. 基準軸をとって ⅡI. 基準軸に垂直な平面で切ってできる断面の面積 を求めて ⅢI.ⅡIの断面積を積分する y≧0≦z≦1で表され 4つの不等式x+y-z, る立体Dについて,次の問いに答えよ. (1) 立体Dの平面 z=t による断面の面積S(t) をtで表せ. (2) 立体Dの体積Vを求めよ. 79 第6章

回答募集中 回答数: 0
数学 高校生

積分の体積の問題です 黄色マーカーで引いたところの解説をお願いします

224 第6章積分法 122 回転体でない体積(I) XC 底面が半径①の円で高さ 1の円柱がある.この円柱を底面の円の直径 AB を含み, 底面と45°の角度をなす平面で切ると, 大, 小2つの立体に 分かれる。このとき小さい方の立体の体積を求めよ 今回は回転体でない立体の体積ですが,基本的には回転体の体積と 1 において 同じ考え方です. たとえば, 116 の V₁=1 =xf (f(x)}dx という式がかいてありますが、π(f(z))とは、 半径f(z) | の円の面積のことです. すなわち, 立体図形を回転軸に垂直な平 精講 面で切ったときの断面積です. だから, 軽いタッチでいえば, 体積は (断面積) dx で表せる わけです。この考え方を使って体積を求めますが,立体をどこで切るかを判断 するとき,断面積が求められるような切り方をしないといけません。 A. <図1> 0 45° 1 B 解答 <図II> O B DC y (II) ² 1-t² 底面の円の中心を原点Oとし, AB方向に軸を定める. すなわち, A(-1, 0), B(1, 0) とする. 次に、小さい立体の底面の半円の弧がy≧0の領域にあるように軸 をとる. 〈図ⅡI> このとき, (t, 0) (-1≦t≦1)を通り, x軸に垂直な平面で切ると, その断面は, 〈図Ⅲ〉のような直角二等辺三 その面積をSとすると, S=12 (1-1) v-fsdt=20-dt-fa-a V= =1- 注 基準軸のとり方は1通りとは限りません. ちなみに、この立体の 自場合,軸の方を基準軸にしても体積は求められます。(別解 (図IV> (別解) 点 (0, t) (0≦t≦1) を通り、軸に垂 直な平面で切ると断面は〈図Ⅳ>のような長方 形で,その面積は2tv1ーゼ :. V=S2t√/1-P² dt ポイント だから, 演習問題 122 =-fa-ty√1-² dt =- [ ²3 (¹1-1²) ²1' = ²/3 225 ハード 回転体でない体積の求め方は I. 基準軸をとって Ⅱ. 基準軸に垂直な平面で切ってできる断面の面積 を求めて III.ⅡIの断面積を積分する xy平面上に円C:x2+y^2=1 がある.軸上の点T (t, 0) (-1≦t≦1) を通り,x軸に垂直な円Cの弦を PQ とする. このと き、PQを1とする正三角形 PQR を ry平面に垂直になるよう につくる. 次の問いに答えよ. 19 (1) △PQR の面積Sをtで表せ. (2) tが1から1まで動くとき, PQR がつくる立体の体積V 第6章

回答募集中 回答数: 0