数学
高校生

積分の体積の問題です

黄色マーカーで引いたところの解説をお願いします

基礎問 226 123 回転体でない体積(ⅡI) 2⑦ 次の問いに答えよ. 12 (1) 定積分 1fpdt を求めよ。 (2) 不等式 z'+y2+log (1+22) log2 ......(*) で表される立体Dにつ いて (ア) 立体Dを平面 z=tで切ることを考える. このとき, 断面が存在 するような実数十のとりうる値を求めよ. (イ)(ア)における断面積をS(t) とする. S(t) をtで表せ. 立体Dの体積Vを求めよ. (ウ) 第6章積分法 精講 (1) 分数関数の定積分は,次の手順で考えます。 ① 「分子の次数<分母の次数」 の形へ ② f(x) ③②の形でなければ、 分母の式を見て 因数分解できれば, 部分分数分解へ (89 因数分解できなければ, tan0の置換を考える (90) (2) 立体Dの形が全くわかりませんが, 122 によれば断面積を積分して求めら れます。 だから立体の形がわからなくても、断面積が求まれば体積は求めら れるのです.そのときの定積分の式を求める作業が(イ)で, 定積分の範囲を求 める作業が(ア)になっています。 1+t2 "'(x) 解 答 (1) Softpdt=f'(1-14ps) at=1-So1tradt 1+t2 ここで, Softpdt において,t=tan0 とおくと 90(1) = S₁³ do = 7 4 -dxの形を疑う (89) 1+t2 t0→1 dt TL 1 do 00-E docosey だから、∫otpad="1+lando cos2d よって,Strat=1- 1+t2 π (2) (ア) (*) z=t を代入して ²+y² ≤log2-log(1+t²) ......① この不等式をみたす実数工、リが存在するこ これが断面が存在す とから, るということ log2-log (1+t²) ≥0 2≥1+t² = 1²≤1 " -1≤t≤1 立体Dの平面 z=t (-1≦t≦1) による断面はxy平面上の不等 式①で表される図形で,これは (半径) が log2-10g(1+1)の円の (イ) 周および内部を表すので 22² +7² {/² S(t)=z{log2-log(1+t)} (→) V=r{log 2-log(1+t²)}dt =2zf"{log2-10g(1+t)}dt =2zlog2-2x(t)'log(1+t)dt =2xl0g2-2x|tlog(1+t)+ 25 24 psdt 21² =4nf1+₁ dt-4(1-4)=(1-x) 4π 1+t2 2 ポイント 演習問題 123 ◆これが z=tで切る ということ 227 <S(t) は偶関数 87 (1) 部分積分 2 注∫_{log2-log(1+t^2)}dt = f_log1fFdtと変形してしまうと 定積分は厳しくなります。 回転体でない体積の求め方は I. 基準軸をとって ⅡI. 基準軸に垂直な平面で切ってできる断面の面積 を求めて ⅢI.ⅡIの断面積を積分する y≧0≦z≦1で表され 4つの不等式x+y-z, る立体Dについて,次の問いに答えよ. (1) 立体Dの平面 z=t による断面の面積S(t) をtで表せ. (2) 立体Dの体積Vを求めよ. 79 第6章

回答

まだ回答がありません。

疑問は解決しましたか?