学年

教科

質問の種類

数学 高校生

ケコがわかりません。 ①2枚目の写真で蛍光ペンを引いているところなのですが、教科書で見たことがない解き方で、3枚目の写真(自分でまとめたノート)なのですが、これは黄色の蛍光ペンとピンクの蛍光ペンどちらなのですか? ②共通テストで統計が出るのですが、初めの二項分布とかは誘... 続きを読む

第5問 (16点) 次のような実験を行うことを考える。 太さが十分に小さく長さがしである, 曲がっていない針を1本用意する。 次に, 平坦な机の上に, 隣同士の直線間の距離がLとなるような平行線を多数描いておく このとき、次の試行を1600回繰り返す。 試行 針を無作為に机の上に落とし, 机の上に落ちて倒れた針が机に描かれた平行線と共有点 をもつかどうかを確認した後, 針を机から取りあげる。 (1) 1≤k≤1600 +3. k回目の試行について, 落ちた針が机に描かれた平行線と共有点をもつ場合は1, 共有点をも たない場合は0となるような確率変数を X とおく. また + X=X+X₂++X1600 m とする. 落ちた針が机に描かれた平行線と共有点をもつ確率を とおくと, Xは二項分布 Bア, に従う。 で また、実験回数の値1600は十分大きい数なので, 二項分布 B( 正規分布 N(m,) と見なすことができる。 ただし ・① は近似的に X-m ① X-m ② X-a 6 m ③ X-02 m 回の試行を行う形式を 形式をとることで, 今回の実験をすることができた。 のの結果、落ちた針が机に描かれた平行線と共有点をもった回数がクラス全体でちょうど 1000回となった。 _1000_5 R=1 1600 8 このとき、落ちた針が机に描かれた平行線と共有点をもつ状況の発生頻度 今回の実験結果から, (1) でおいたかの値の, 信頼度 95%の信頼区間を推定しよう (i) 本間では, 正規分布表 (省略) を用いて答えよ。 1600 |標準正規分布 N (0, 1)に従う, (1)の確率変数Zについて, 正規分布表より P(カキクZカキク)=0.95 が成り立つ。 (i)の結果より,標準正規分布 N(0, 1)に従う確率変数Zはおよそ95%の確率で不等式 ウ m= σ²= H カキク ZSカ キク また, >0である。 をみたしている。 ここで, 確率変数Xが近似的に正規分布 N(m, ♂) に従うので, 確率変数Zを a である。 このとき,確率変数X, Zは関係式 ② 220 Z= オ ...2 Z= オ TOCH と定めると, Zは近似的に標準正規分布 N(0, 1)に従う。 をみたす。 er-14 ア ウ の解答群(同じものを繰り返し選んでもよい。) 1 1 ⑩ 1600 ① 40 ② 1 ③ ④ ⑤ 1600p 6 40p ⑦カ ⑧ 44 40 1600 D 40 1600 I の解答群 ⑩ 1600p ① 40p 144 4 1600p(1-p) 40 p(1-p) 5 40p(1-p) ⑦ 40 1600 ここで, ①よりm= ウであり,これはかを含む式である また,得られた実験結果では X=1000 であったので 3.081 X 1600 5 =R= 8 (1 が成り立つ。 さらに、①の エ については,次の仮定を適用して考えるものとする。 仮定 エ の式中に現れるかは,今回の実験での発生頻度Rの値 D 1600 p(1-p) R=555 8 に置きかえて計算してもよい。 この仮定の下での値の信頼度 95%の信頼区間は

解決済み 回答数: 1
数学 高校生

仮説検定の問題です。 P(Z≧2)の前との間の途中式がよく分かりません。 これはx-(エックスの平均)に何かを代入しているの でしょうか? また分母の計算も有理化などをしているのですか? 解説して貰えると助かります🙏🏻

27 ある果樹園で生産されるオレンジは、例年1個あたりの重さの平均が 95g, 標準偏差が6gであ るが, 今年はより大きな果実を生産するために肥料を変えた。 今年のオレンジから 144個を無作為 抽出して調査したところ,その平均は96gであった。 標本の標準偏差が6gであるとすると,今年 生産されたオレンジは例年より重くなったと判断できるか。有意水準 5% で片側検定せよ。 11 仮説検定 27 今年生産されたオレンジの重さの平均をmとする と、帰無仮説はm=95, 対立仮説はm>95 である。 帰無仮説が正しいとすると、標本平均 X の分布は 正規分布 N (95,6)と見なせる。 (3)大きさの標本の標本平均 X の標準偏差は 72 であるから 72 <4 よって n>324 よって したがって、標本の大きさを少なくとも325に すればよい。 X-95 1 P (X-95 ≧ 96-95)=P 6 6 2(1) 計測回数をnとすると, 信頼区間の幅は,信頼 合前の 度95%のとき √144 √144 0.04 2.1.96. P(Z≧2) =0.02275< 0.05 したがって,m=95 という帰無仮説は棄却される。 すなわち, 今年生産されたオレンジは例年より重く なったと判断できる。 であり,信頼度99% のとき 0.04 2.2.58・ 「n である。 よって、区間の幅が狭いのは、 信頼度 95%の信頼

解決済み 回答数: 1
数学 高校生

どうやって直角三角形の比が求まるのかわかりません。角度はわかっていませんよねぇ。?

例題 14 力のつりあい 右図のように、重さ60Nのおもりを糸1と2を用いて天井か らつるした。 (1)糸1がおもりを引く張力の大きさ Ti 〔N〕 を求めよ。 (2)糸2がおもりを引く張力の大きさ T2 〔N〕 を求めよ。 糸 1 解答 (1)T1 = 48N (2) T2 = 36N 50cm 40cm 糸2 30cm おもり 60 N 力のつりあいの基本プロセス Process プロセス 0 直角三角形の 辺の比 Ti 35 -T2 AT2 35 T 60N 45 ・水平方向に力を分解する プロセス 2 鉛直方向と水平方向について, 力のつりあいの式をたてる プロセス 3 連立方程式を解き、 求めたい物理 を求める プロセス 1 物体にはたらく力をすべて図示し, 鉛直・ 解説 (1) プロセス (2) 物体にはたらく力をすべて図示し, 鉛直・水平方向に力を分解する プロセス 2 鉛直方向と水平方向について, 力のつりあいの式をたてる 別解 三角形の辺の比で解く。 3力のつりあいを図で示すと, 合力、 2つの張力の合力 T1 鉛直方向の力のつりあいの式より T2 T₁ T₁+ T₂ = 60 ...... 60 N 水平方向の力のつりあいの式より 60N T₂ 直角三角形の 5:4: プロセス 3 連立方程式を解き, 求めたい物理量 を求める ① ②を連立させて解くと, T=48〔N〕,T2=36〔N〕 圈 T = 48N T2=36N 直角三角形の辺の比5:43 さの比に等しい。 60:T1:T2=5:4:3 よってT = 48 〔N〕, T2=

解決済み 回答数: 1
数学 高校生

この問題の ク で、2が間違ってる理由が分かりません。 何故Nの最大値は境界を通るNの値と一致しないのでしょうか?? 0が合ってる理由は分かりますが2がわならないです。。 教えて欲しいです! また、スセソタチで、何故格子点の最大値が答えになるのでしょうか? 解説お願いします!

95-4+18 第3問 (必答問題) (配点 28) 2 y =++N y- もは x,yを実数として、①の2つの不等式, およびx≧0, y≧0 からなる連立不等 式の表す領域をDとする。 こで,x,y 式 ③、④. る連立不等 部分(埃 た、直線 y=-3x [1] あるサプリメントには, 1包が1g入りで10円の顆粒 1錠が0.2gで30円の錠 剤の二つのタイプがある。 N=ア x+yの表す直線をlとすると このことから,x,yが①を れは傾き 含まれる栄養成分は, 顆粒では1包に0.3g, 錠剤では1錠に0.1gであり, 残り の成分はすべて添加物である。 満たす0以上の実数のとき,Nはx=y= コ で最大値 サシをとることがわ 18 かる。 このサプリメントを二つのタイプの価格の合計が180円以下,かつ,含まれる添 加物の合計が3.6g以下となるように使用し、含まれる栄養成分の合計を 0.1×N(g) とするときの最大値を求めよう。 3 顆粒をx包, 錠剤をy錠使用する場合, N= x+y であり,価格,添加物 の合計の条件は3 x+ イ である。 X+24=(F 8 y≤ ウエ かつ オ x+y カキ 大学Ⅱ, 数学 B 数学C第3問は次ページに続く。) ク | については,最も適当なものを,次の①~③のうちから一つ選べ。 ⑩ ①を満たす0以上の実数x, yで,N= アx+yとなるものが存在する ことと, 直線ℓが領域Dと共有点をもつことは同値である。 よってNの 最大値は,直線lが領域 Dと共有点をもつような最大のNの値と一致する ① ①を満たす0以上のすべての実数x, y, N= ア x+yとなること と、 直線 l が領域Dと共有点をもつことは同値である。 よって, Nの最大 値は, 直線ℓが領域Dと共有点をもつような最大のNの値と一致する ② 直線 l が領域Dと共有点をもつとき、領域D に属する点 (x, y) で 直線 上にあるものが存在する。 よって, Nの最大値は, 直線ℓが領域 Dの境界 を通るときのNの値と一致する 直線 l が領域 Dと共有点をもつとき、領域Dに属するすべての点(x,y) が直線上にある。 よって, Nの最大値は, 直線 l が領域 Dの境界を通る ときのNの値と一致する ( ③ かつ ④ で、 N= ことと, の最大値 致する より きNは たがっ 3-2 eが きの 下図 上が x よび (第2回5) しかし、実際に使用するのは1包単位, 1錠単位であるから, x, yが①を満たす 20以上の整数のときを考えると, Nはx=y= ス および, x= セ y= で最大値 タチをとることがわかる。 (数学ⅡI, 数学 B, 数学C第3問は次ページに続く。) (第2回-6)

解決済み 回答数: 1
数学 高校生

ここにマイナスがつかないのはなぜですか?

177 確率密度関数 連続型確率変数Xのとり得る値xの範囲が s≦x≦t で,確率 密度関数 f(x) のとき,Xの平均E (X) は次の式で与えられる. E(X)=√xf(x)dx αを正の実数とする. 連続型確率変数Xのとり得る値xの範 囲が -a≦x≦2α で, 確率密度関数が 2 (x+a) (-a≦x≦0 のとき) se f(x)= であるとする. 3a2 1 3az(2a-x)(0≦x≦2a のとき) (1)Xが4以上 12024以下の範囲にある確率 P(a≦x≦2/20) を求 (2) Xの平均E (X) を求めよ. (3) Y=2X+7 のとき,Yの平均E (Y) を求めよ. 精講 これまでは,ものの個数や起こった回数などのように, 確率変数が とびとびの値をとるものだけを扱ってきました. この確率変数を離 散型確率変数といいます. これに対して, 人の身長,物の重さ, 待 ち時間などのように, 連続的な値をとる確率変数を連続型確率変数といいます. 連続型確率変数X が α以上 6以下の範囲にある確率P(a≦x≦b)は, P(a≦x≦b)=f(x)dx 確率を図の斜線部分の面積として表す で表されます.すなわち, 確率 P(a≦X ≦ b) は, y 曲線 y=f(x), x軸, 直線 x=a,x=b P(a≤x≤b) で囲まれた部分の面積で表されます. y=f(x) ここで関数 f(x) は f(x)≥0 【確率は負になることはないので f(x) <0 になることはない であり,Xのとり得る値の全範囲が α≦x≦ß a b I たし この 分散 | 偏差 考

解決済み 回答数: 1
数学 高校生

解答の95+12x>100+12(20-x) になるのがわかりません。95と100は重さで12xと12(20-x)は、球の数のはずなのに足すのはなぜですか?

59 1 ◎基本2 なるだろうか? (2) も同様。 AxB の形に A>0, A=0, で場合分け。 基本 例題 32 1次不等式と文章題 下 Aの箱の重さは95g,Bの箱の重さは100gである。 1個12gの球が20個あ り,これらをAとBに分けて入れたところ,Aの箱の方が重かった。そこで 基本30 Aの箱からBの箱に球を1個移したところ、今度はBの箱の方が重くなった。 最初,Aの箱には何個の球を入れたか。 CHART & SOLUTION 文章題の解法 ① 変数を適当に定め、関係式を作って解く ②解が問題の条件に適するかどうかを吟味 最初,Aの箱の球をx個としたときのAとBの重さを比較した関係式を作る。 次に,Aの箱の球を1個減らし、Bの箱の球を1個増やしたときの重さを比較した関係式を 作る。こうしてできる2つの不等式を連立させて解けばよい。 なお, xは自然数であることに注意する。 解答 となるためには,最大 とき 0 を代入して すべての実数x の範囲を定 Bは (20-x) 個 最初,Aの箱にx個の球を入れたとすると して0.x=0である A,Bの重さを比較して 95+12x > 100+12(20-x ) 05Aの方が重い。 245 整理して 24x>245 よって x> 24 正の数なので、 の向きはそのまま Aの箱から1個減らし, Bの箱に1個増やしたとき A,Bの重さを比較して 95+12(x-1) <100+12(21-x) ← Aは (x-1) 個, Bは(20-x+1) 個 ←Bの方が重い。 1章 1次不等式 整理して 24x<269 よって は負の数なので、 x<- 24② である 269 の向きは逆にな 245 ①と②の共通範囲を求めて 269 ·<x<· 24 24 245 24 ≒10.2, 269 24 ≒11.2 xは自然数であるから x=11 ◆解の吟味。 したがって,最初Aの箱に入れた球は11個である。 2 Ic

解決済み 回答数: 1