学年

教科

質問の種類

数学 高校生

(3)のマーカーしてある部分がなぜそうなるのか分かりません。教えていただきたいです。

6 第6章 場合の数 301 Step Up お互いに身長の異なる8人を, 山の形に整列させる. i番目に並ぶ人の身長をん とし 一 番高い人をん (2≦k≦7) 番目に配置することにすると,これを数式で表記すれば、 h₁<h₂<<hr hr>...> he である. このとき, 以下の問いに答えよ. ただし, "Co+m+,C2+....+,C=2" が成 り立つことを用いてもよい。 (1) k=3 となる並べ方は何通りあるか答えよ. (2) 2≦k≦7 に対して, 並べ方は全部で何通りあるか答えよ. (3)n(n≧3)人を同様に整列させるとき, 2≦k≦n-1 に対して, 並べ方は全部で何通り あるか答えよ. 8人を身長の低い順に, 1, 2, 3, ..., 7, ⑧とする. (1) k=3 というのは、3番目に⑧がきていて, となる場合である. をみると 左の2つの△△は、7人から2人を選び,身長の低い 順に並べて、右の5つの□□□□□は、残りの5人を身 長の高い順に並べるので, C2=21(通り) (2) たとえば,k=2のときだと, 1AO で、△は7人から1人を選び, 6つの□には身長の高い 順に並べるから、 C7(通り) というようになっている. したがって,まとめると, k=2,3,4,5,6,7 に対し ⑧の左の△のところに, 7人から1人、2人,3人, 4人,5人,6人を選び, 身長の低い順に並べることにな あるので, 7C1+7C2+7C3+7C4+7C5+7C6 △△に入れる2人を選べば、 条件を満たす並べ方は1通り に決まる。 太 章末問題 &&& 同人) 6 (表)の通り ST(S) ={7C0+(7C1+7C2++7C6)+7C7}-(7C0+7C7) 3)=2'-2 KnCo+nCi+....+nCn=2" を 2乘出る利用。なお,この等式は、数 126 (通り) (高液る食 器 (3)人を身長の低い順に, ① ② ③, ... (2)と同様に,たとえば, k=2のときだと で,これは, (n-2)人 k=3のときだと, 棚の持ち とする 学で学習する二項定理を用 いて導くことができる。 (U) 0-0x2=1 (通り) 次の確率を求め、島 (n-1) 人から を除く 歌中1人を選ぶ。 以 △△□□□ 「目の出方は全部(n-3) 人 で,これは, n-1 (通り) したがって, 並べ方は全部で, n-Ci+n-1C2+n-1C3 ++n-1Cn-2 =-Cot-Ci+n-Cotto - Cn-2) +-- 2-1-2 (通り) △△に⑦を除く (n-1) 人か ら2人を選び, 身長の低い順 に並べる. —(n-Cotn-Cn-i) | Yeti のり

解決済み 回答数: 2
数学 高校生

なぜ4点ABCDから出来る平行四辺形はこの3つだけなんですか??円順列的に考えて3つの並び替えで3!で6通り存在しないのは何故ですか??

Think 例題 C2.9 複素数平面での平行四辺形の頂点 形式 (365) C2-1 **** 複素数平面上に4点A(1-2), B(z), C(iz), D(z) を定める. 四角形 ABCD が平行四辺形であるとき, 複素数 zを求めよ. 考え方 四角形ABCD が平行四辺形であることをベクトルで表すと, AB=DC であるから 複素数平面でA(α), B(β), C(y), D() のとき, β-α=y-δ である. 四角形ABCD が平行四辺形より, AB = DC, AB/DC 解答 である. よって、 z-(1-2i)=iz-ス つまり、 z=(i-1)z+(1-2i) ①の両辺の共役複素数をとると, _z= (-i-1)z+(1+2i) ここに①を代入すると, ① www D(z) C(iz) O B(z) (8O+AO)SAA(1-2i) z=(-i−1){(i−1)z+(1−2i)}+(1+2i) したがって, 0% z=2z-2+3i z=2-3i 0 th 1=2+b)+(nds) ① OAO)+(内 (別解)四角形ABCD が平行四辺形のとき,対角線 AC と BD の中点は一致するから、 A (1-2)+iz 2 た z+z32. OA 2点α, βを結ぶ線分 (S)(1) A01:1 したがって, ad よって, (1-iz+z=1-2i の中点は, a+β (1-2i)+iz=z+z 2 (p.C2-52 参照) ①の両辺の共役複素数をとると, (1+i)z+z=1+2i.......② ① ×(1+i) ② より を消去すると, z=2-3i Focus 四角形ABCD が平行四辺形A0 .00 x+Q+D AB=DC または AD=BĆ あるいは、対角線の中点が一致 z= a + bi (a,b は実数) とおくと, z=a-bi これらを,z-(1-2i)=iz-zに代入して解くこともできる。三 "はABC AD 習 例題 C2.9 の4点 A, B, C, D が平行四辺形の頂点となるような複素数zのうち, 2.9 例題 C2.9で求めた z=2-31 以外の z をすべて求めよ.

解決済み 回答数: 1
数学 高校生

青線引いた部分が分かりません! なぜ2のn乗になるのかの途中式、証明を教えて頂けませんか?

6 お互いに身長の異なる8人を,山の形に整列させる. i番目に並ぶ人の身長とし,一 番高い人をk (2≦k≦7) 番目に配置することにすると,これを数式で表記すれば, h₁<h₂<<hr hr>...> he である。このとき、以下の問いに答えよ。ただし,Co+i+,2,Cn=2" が成 り立つことを用いてもよい。 (1) k=3となる並べ方は何通りあるか答えよ. (2) 2≦k≦7 に対して, 並べ方は全部で何通りあるか答えよ. (3)n(n≧3)人を同様に整列させるとき,2≦k≦n-1 に対して, 並べ方は全部で何通り あるか答えよ. 8人を身長の低い順に, 1, 2, 3, ..., 7, 8 とする. k=3 というのは、3番目に⑧がきていて AAD となる場合である. 左の2つの△△は, 7人から2人を選び, 身長の低い 順に並べて,右の5つの□□□□□は、残りの5人を身 長の高い順に並べるので C2=21 (通り) (2) たとえば,k=2のときだと, A で、△は7人から1人を選び, 6つの□には身長の高い 順に並べるから, C2=7(通り) というようになっている したがって, まとめると, k=2,3,4,5,6,7に対し て ⑧の左の△のところに, 7人から1人、2人,3人, 4人,5人,6人を選び, 身長の低い順に並べることにな るので, 7C1+7C2+1C3+7C4+7C5+7C6 △△に入れる2人を選べば, 条件を満たす並べ方は1通り に決まる. 章末問題 ={7C0+(C1+7C2++7C6)+7C7}-(7C0+7C7) =27-2 =126(通り) (3)人を身長の低い順に ① ② ③ ... とする. (2)と同様に,たとえば,k=2のときだと, A で,これは, (n-2) 人 k=3のときだと, (通り) 大 Co+nCi+C=2" を 利用. なお、この等式は、数 学Ⅱで学習する二項定理を用 いて導くことができる. を除く (n-1) 人から 1人を選ぶ (n-3) 人 で (通り) したがって, 並べ方は全部で, n-Ci+n-1C2+n-1C++n-1Cn-2 ={n-Co+(n-1C2+n-1 C2++n-1Cn-2)+n-1Cn-1}| ..... -(n-1Co+n-1Cn-1) △△に⑦を除く (n-1) 人か ら2人を選び、身長の低い順 に並べる. 2-1-2 (通り)

解決済み 回答数: 1