学年

教科

質問の種類

数学 高校生

2問あります (1)番 なぜ y=e logx が 赤線のx= の式になるのでしょうか (2)番 青線の式でなぜy=- cosxを微分したのでしょうか そのまま y=-cosxで積分できないのでしょうか わかる方お願い致します

基本 例題 178 曲線 x=g(y) と軸の間の面積 次の曲線と直線で囲まれた部分の面積Sを求めよ。曲 (1) y=elogx, y=-1, y=2e, y 軸 00000 (2) y=COS (0≤x≤л), y= y=- 1 2 y軸 2' p.300 基本事項3 重要 184 指針 調べる。 まず、曲線の概形をかき,曲線と直線や座標軸との共有点を YA x=g(y) d 常に (1) y=elogx を x について解き, ♡で積分するとよい。 xについての積分で面積を求めるよりも,計算がらくに なる。 (2)と同じように考えても、高校数学の範囲では y=-cosx x=g(y) の形にはできない。 そこで置換積分法を利用する。 (1,2) ともに別解のような, 長方形の面積から引く方 法でもよい。 S= g(y)≥0 = g(9)dy 2e (1) y=elogx から y x=ee -1≦x≦2eで常にx>0 解答 よって 2e s=e=dy=[ee] -1 =ee-ee- =e³-e¹-1 (2) y=-cosx から dy = sinxdx よって S=Sxdy= dy=xsinxdx -[-xx]+$" com.x dx == XCOS 3 π =-237-(-1)+1.1/1 = π π +0= (1)の別解 (長方形の面積 x=exから引く方法) x S=e2(2e+1) -S(elogx+1)dx =2e3+e² -[e(xl0gx-x) +x 2e+1 |1|2| y π X 3 → ↑ ← |1|2|2|3| (2)の別解 (上と同じ方法) 2S-(+) ・π S= -S²² (-cos.x + 1)dx = x+sinx−2x] YA π 3 y=-cost 12 1 2、 S 0 + sinx -1 12 π 2 23 π π 2

回答募集中 回答数: 0
数学 高校生

星印でマーカー引っ張ってあるところがなんで2p=〜になるのかがわかりません。教えてください!

・ 楕円・ 双曲線 (473) C2-125 そ *** その概形を 準線 y=3 例題 C250 放物線の決定 ( 2 ) **** 焦点のx座標が3, 準線が直線x5 で,点(3, -1) を通る放物線の方 程式を求めよ. 考え方 放物線 y=4px の頂点の座標は (0, 0) である. この放物線をx軸方向に a, y 軸方向にだけ平行移 動した点 (a, b)が頂点の放物線は, (y-b)2=4p(x-a) と表すことができる. x 準線は, 直線 x=- 解答 焦点の座標を(36) とすると,準線が直線 x=5 である から頂点の座標は (46) とおける. したがって、求める放物線の方程式は, (y—b)²=4p(x-4)...... となる. y²=4px 1² p= ここで 2p=3-5=-2 これより p=- ①より x=5 準線 焦点 (3,6) 頂点 (4,6 ① に p=-1 を代入す る. を代入する。 焦点の座標は、 0.1) を代入する. (y-b)=-4(x-4) これが点 (3,-1) を通るから, (-1-b)=-4(3-4)(0) J- b=-3,1 よって, 求める放物線の方程式は, (y+3)=-4(x-4), (y-1)=-4(-4) 前章土 利 02=4pxにp=2 を代入する。 =4gy に q=-3 を代入する。 注) 原点O(0, 0) が頂点の放物線 y2=4px x2=4qy x=0,6) x軸方向にay 軸方向にだけ平行移動 「点 (a, b) が頂点の放物線 (y-b)²=4p(x-a) (x-a)²=4q(y-b) 5 3.F 練習 C2.50 ** PA (a,b Oa x x 131 焦点のx座標が5. 準線が直線x=1 で 点, 3 を通る放物線の方程式を求 B B: C C 6

回答募集中 回答数: 0