学年

教科

質問の種類

数学 高校生

225. 記述式の確率問題を解く際に頻繁に書く 「ーーは互いに排反なので」という文言ですが この問題でもaの値による場合分けをしているので 互いに排反と言えるのでしょうか?

演習 例題 225 不等式が常に成り立つ条件(微分利用) 00000 aは定数とする。 x≧0 において,常に不等式 x-3ax²+4a> 0 が成り立つよう にαの値の範囲を定めよ。 基本220 指針f(x)=x-3ax2+4aとして, PLANS ンの検討 の例題29 解答 f(x)=x²-3ax2+4a とすると =0 とすると f'(x)=0 とすると x=0, 2a 求める条件は,次のことを満たすαの値の範囲である。 「x≧0 におけるf(x) の最小値が正である」 1 のときに [x≧0 におけるf(x) の最小値] > 0 となる条件を求める。 導関数を求め,f'(x)=0 とすると x=0, 2a 02a の大小関係によって, f(x) の増減は異なる から 場合分けをして考える。 コールのとき [1] 2a<0 すなわち α<0のとき x≧0 におけるf(x) の増減表は右のよう になる。 f'(x)=3x2-6ax=3x(x-2a) 270 FT F 72470 Fi ①を満たすための条件は したがって a>0 4a>0 これはα<0に適さない。 [2] 2a=0 すなわち a=0のとき f'(x)=3x2≧0で, f(x)は常に単調に増加する。 を満たすための条件は f(0)=4a>0 これは α = 0 に適さない。 よって a>0 [3] 20 すなわち a>0のとき におけるf(x) の増減 表は右のようになる。 ①を満たすための条件は -4a²+4a>0 0 f' (x) f(x) 4a -4a(a+1)(a-1)>0 a(a+1)(a-1)<0 a<-1,0<a<1 0<a< 1 ゆえに よって これを解くと a> 0 を満たすものは [1]~[3] から 求めるαの値の範囲は 0 2a<0 x f'(x) + f(x) 4a > 0<a<1 2a0x 2a 0 -4a³+4a/ + 2a=0 x 注意 左の解答では, [1] 2a<0, [2] 2a=0, [3] 2a>0 の3つの場合に 分けているが, [1] と[2] を まとめ, 2a≦0, 2a>0 の場 合に分けてもよい。 なぜなら, 2a≦0のとき, x≧0ではf'(x)≧0 であるから, x≧0でf(x) は 単調に増加する。 -1 ゆえに, x≧0 での最小値は f(0) =4a である。 実際に左 の解答 [1] と [2] を見てみ ると,同じことを考えている のがわかる。 a (a+1)(a-1)の符号 + < a>0 のとき i 0 2a x 0<2a a(a+1)>0 ゆえに a-1 <0 としてもよい。 1 a 343 6章 3 関連発展問題 38

未解決 回答数: 1
数学 高校生

239.1 解答の別解の方で解いたのですが、 解答でいう「①と③が一致するとき」という文言を 「①、②はxにおいて次数の等しい項の係数は等しいので」 と書いたのですが問題ないですか??

点 重要 例題239 2つの放物線とその共通接線の間の面積 2つの放物線C1:y=x2, C2:y=x2 - 8x +8 を考える。 (1) CとC2の両方に接する直線l の方程式を求めよ。 (2) 2つの放物線 C1, C2 と直線lで囲まれた図形の面積Sを求めよ。 xx-α) 二下関係は -4x+3 3x-33 指針 (1) 「Cに接する直線がC2 にも接する」と考える。まず, C 上の点(p,p2) における接線の方程式を求め,この直線が C2 に接する条件を,接線⇔重解を利用して求める。 (2) 面積を求めるときの定積分の計算には,前ページ同様 [(x—a)²dx= (x_a)³ -+C (C は積分定数) を使うとらく。 3 (1) 755 における接線の方程式は,y'=2xから 上の点(p,p2) y-p²=2p(x-p) b5 y=2px-p². ① この直線がC2 にも接するための条件は、 2次方程式 2px-p2=x2-8x+8 ゆえに xh (2) x=-1+4=3 Ci, C2 との接点のx座標は,それぞれ 7:01:49 2009 すなわち x-2(p+4)x+p2+8=0 が重解をもつことであり、②の判別式をDとするとD=0 WURD ここで D={-(p+4)}²-1• (p²+8)=8(p+1) p=-1 よって 8(p+1)=0 ① から、直線ℓ の方程式は y=-2x-1 (2)=1のとき2次方程式②の解は ...... =S_,(x+1)'dx+∫(x-3)"dx -3)³ 8 8 [(x + ¹)²] + [(x - 3²1 - 3 + 3 = 16 3 3 3 x=-1.3 C1とC2の交点のx座標は,x2=x2-8x+8から したがって求める面積は S=S_{x-(-2x-1)}dx+∫{x28x+8-(-2x-1)}dx x=1 \C₁ 1x=- 基本 236~238 2 別解 (1) C2上の点 (g, g2-8g+8) における 接線の方程式は y-(g²-8g+8)=(2g-8)(x-g) すなわち y=2(g-4)x-q2+8 ….. ③ ①と③が一致するとき 2p=2(q-4), -p²=-q²+8 これを解いて -1 000 p=-1, g=3 よって、直線l の方程式は y=-2x-1 -2(p+4) 2・1 AVCi 1 l から。 3 3 71 4 面 積

未解決 回答数: 1