学年

教科

質問の種類

数学 高校生

解の吟味がよくわかりません

0000 をもつよう 実数解をも 基本 78 基本 例題 80 2次方程式の応用 右の図のように, BC=20cm, AB=AC, ∠A=90° の三角形ABC がある。 辺 AB, AC上に AD=AE となるように2点D, E をとり, D, E から辺BCに 垂線を引き、 その交点をそれぞれF,Gとする。 MOT 長方形 DFGE の面積が20cm² となるとき, 辺 FG の長さを求めよ。 CHART & SOLUTION 方程式) 文章題の解法 D A E B F G 20cm 基本 66 135 等しい関係の式で表しやすいように, 変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=x として, 長方形 DFGEの面積をxで表す。 そして、面積の式を=20 とおいた 共 xの2次方程式を解く。最後に,求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 3章 9 2次方程式 (-5)(-5)=0 J0 から, 解答 を利用する。 FG=x とすると, 0 <FG <BC であるから 0<x<20 ① ← 定義域 また, DFBFCG であるから D E ≥-7 2DF=BC-FG joc & ∠B=∠C=45° であるか ら,△BDF, ACEGも直 B F x G C 角二等辺三角形 20-x m よって DF= 2 長方形 DFGE の面積は DF・FG=- 20-x. ・x 2 $10 S=D. [S] 540 のは, き。 ゆえに 20-x 21 x=20 整理すると 解をも これを解いて x2-20x+40=0 x=-(-10)±√(-10)²-1.4026 102/15 xxの係数が偶数 ここで, 02/158 から 解の吟味。 10-8<10-2/15 <20, 2<10+2/15 <10+8 よって、この解はいずれも ①を満たす。 ①①左目立 したがって 02√15=√60<√64=8 FG=10±2√15 (単位をつけ忘れないよう 新 a PRACTICE 802 BOIT 9 の の [大] 数を求めよ。 連続した3つの自然数のうち, 最小のものの平方が,他の2数の和に等しい。 この3

未解決 回答数: 0
数学 高校生

212. このような記述でも問題ないですかね?? 0<h<aは書いていないですが問題ないですよね? (r^2=a^2-h^2は書いていてr,a,hは当然全て>0なのだから同様のことは言えていると思いました。)

330 00000 基本例題 212 最大・最小の文章題(微分利用) 類 群馬大 半径aの球に内接する円柱の体積の最大値を求めよ。 また,そのときの円柱の高 基本 211 さを求めよ。 指針 文章題では, 最大値・最小値を求めたい量を式で表すことがカギ。 次の手順で進める。 AM-* ① 変数を決め、その変域を調べる。 [②]最大値を求める量(ここでは円柱の体積), 変数の式で表す。 ③3 ②2 の関数の最大値を求める。なお,この問題では、求める量が,変数の3次式で表 されるから,最大値を求めるのに導関数を用いて増減を調べる。 無 なお,直ちに1つの文字で表すことは難しいから,わからないものは,とにかく文字を使 って表し、条件から文字を減らしていくとよい。 ならば、方程式 #SEN 計算がらくになるように 2h とする。 解答 円柱の高さを2h (0<2h<2a) とし, 底面の半径をrとすると r²=a²-h² 0 <2h<2aから 0<h<a Fo 円柱の体積を Vとすると V=лr² 2h=2(a²-h²)h =-2π(h-a²h) Vをんで微分すると V'=-2π (3h²-α²) =-2π(√3h+a)(√√3 h-a) 0くん <a において, V'=0となる a =1/3のときである。 のは,h= ゆえに,0くん<a におけるVの増 減表は,右のようになる。 したがって, V はん= a √3 よって体積の最大値 次回数でも学んだ h V' 2T V 4√3 9 のとき最大となる。 9-m- 0 ... h= a =1/3のとき,円柱の高さは 2 - 2√3 √3 a 3 -ла³, そのときの円柱の高さ 23 3 a *** 2x(a²-3).-4√3 a /3 9 + a √√3 0 極大 練習 ②212 底面の半径,および側面積を求めよ。 [R a 半径1の球に内接する直円錐で, その側面積が最大 三平方の定理=y(1) 変数の変域を確認。 atla31 82x25- [S- (円柱の体積) = (底面積)×(高さ) dV dh をV' で表す。 h = 0, αは変域に含まれて いないから 変域の端の値 に対するVの値は記入し ていない。 今後,本書の増減表は,こ の方針で書く。 12h 12π(a²-h²)h に対し, その高さ,

回答募集中 回答数: 0
数学 高校生

184. 2つ質問があります。 ①<と書いて間違えたのですが、半分以下は≦(半分も含む)と覚えておけと言うことですか?余談ですが、5以下だと5も該当するということですよね?? ② ①以外で記述で問題がある箇所はありますか??

基本例題184 対数の文章題への利用 28000① A町の人口は近年減少傾向にある。 現在のこの町の人口は前年同時期の人口と 比べて4%減少したという。毎年この比率と同じ比率で減少すると仮定した場合, 初めて人口が現在の半分以下になるのは何年後か。答えは整数で求めよ。ただし, |log102= 0.3010, 10g10 3 = 0.4771 とする。 [立教大] J 指針 文章題を解くときは, 次の①~④の要領で行う。 ① 文字の選定 ② 不等式を作る 2年後の人口は 0.96ax (1-0.04)=(0.96)² a 以後、 同じように考えて, n年後の人口は ③ 不等式を解く ここでは,両辺の常用対数をとる。 ④解を検討する ・・・・・・ n は自然数であることに注意。 LUASE en log10 197 ここで VOAST 現在の人口をαとし, n年後に人口が半分以下になるとする。 1年後の人口は a(1-0.04)=0.96a 練習 184 解答 現在の人口をaとして, n年後に人口が現在の半分以下になる 現在の人口を1としてもよ とすると い。 200 ! 両辺の常用対数をとると 96 100 ...... (0.96) as 1/24 すなわち (1000)=1/2 96 n 20 1 25.3 "De 01 102 logio 2 n≧ 96 log101 =10g10 100 = 5log10 2+log103-218.0-ITTA.0 +01|S, U- =log1025+10g10 3-10g 10 102 Equ =5x0.3010+0.4771-2=-0.0179 よって、①から -0.0179m≦- 0.3010 ゆえに 0.3010 =16.8...... 0.0179 したがって、初めて人口が現在の半分以下になるのは 17 年後 10g10- 01/13=10g102-'=-log102=-0.3010 (0.96)" a 基本183 100 <10>1 であるから,不等 号の向きは変わらない。 「初めて・・・」 とあるから, n≧ 16.8….. を満たす最小の自 然数を求める。 光があるガラス板1枚を通過するごとに,その光の強さが だけ失われるもの とする。当てた光の強さを1とし、この光がn枚重ねたガラス板を通過してきた ときの強さをxとする。 (1)xをnで表せ。 (2)の値が当てた光の 281 より小さくなるとき、最小の整数nの値を求めよ。 [北海道+) 287 5 3 E 用 対 数

回答募集中 回答数: 0
数学 高校生

211. 増減表の解答では空欄になっているところは写真のように斜線を引いていても問題ないですかね??

330 00000 基本例題 212 最大・最小の文章題(微分利用) 半径aの球に内接する円柱の体積の最大値を求めよ。 また, そのときの円柱の高 さを求めよ。 指針 文章題では, 最大値・最小値を求めたい量を式で表すことがカギ。 次の手順で進める。 ① 変数を決め、 その変域を調べる。 ② 最大値を求める量(ここでは円柱の体積) を, 変数の式で表す。 [③3] [②] の関数の最大値を求める。なお,この問題では、求める量が, 変数の3次式で表 されるから, 最大値を求めるのに導関数を用いて増減を調べる。 なお,直ちに1つの文字で表すことは難しいから、わからないものは,とにかく文字を使 って表し、条件から文字を減らしていくとよい。 - 解答 円柱の高さを2h (0<2h<2a) とし, 底面の半径をrとすると r²=d²-h2 0 <2h<2a から 0<h<a 円柱の体積をVとすると V=лr².2h=2(a²-h²) h =-2π(h-ah) V を ん で微分すると h= V'=-2x (3h²-α²2) =-2(√3h+a)(√3h-a) 0くん<a において, V' =0 となる のは, h= のときである。 ゆえに, 0 くん<a におけるVの増 減表は, 右のようになる。 したがって, Vはん= のとき最大となる。 a 1 1/3のとき、円柱の高さは2・ よって 4√3 体積の最大値 9 そのときの円柱の高さ h 0 V' V -ла³, a 2√3 3 = 2√3 a 3 a 23 0 √3 1± 2x(a²-9²).-4√3 xa² + | 極大 a √3 a 計算がらくになるように 2h とする。 群馬 基本211 三平方の定理 変数の変域を確認。 tlas 2x25-64 1 (円柱の体積) =(底面積)×(高さ) dV dh ◄2h を V' で表す。 h = 0, αは変域に含まれて いないから 変域の端の値 に対するVの値は記入し ていない。 今後、本書の増減表は,こ の方針で書く。 ◄2л(a²-h²)h

未解決 回答数: 1
数学 高校生

写真の基礎120の問題なんですけど、どうして、最大値・最小値しか答えがないんですか?答えを見てもわからないの教えて欲しいです🙇‍♀️できたら解き方もお願いします🙏🏻🙇🏻‍♀️

y=a(x-p)^+αの形にして求める。 a>0のとき,x=pで最小値をとる。 最大値はない。 a<0のとき, x=pで最大値gをとる。 最小値はない。 ②② 定義域に制限がある場合の最大・最小 グラフをかいて, 頂点の位置, 定義域の両端におけるyの値に注目する。 y=a(x-p)^+q(h≦x≦k) の最大・最小は,軸x=(頂点のx座標)の位置に よって,次のようになる。 (下の図はα>0 の場合) izj x 大最 中小 hp k x 最 大最 天 小 h k x 最 [最大 小 hp k x 軸が右外 軸が右寄り 軸が中央 軸が左寄り a<0 の場合は, グラフが上に凸で,最大と最小が入れかわる。 ③③3 最大・最小の応用 (文章題) 1 何を変数 (x) にするかを決め、そのとりうる値の範囲 (定義域)を定める。 Va 最 ijvi phkx 2 最大・最小を求めようとする量 (v) , 変数 (x) を用いて表す。 ③変数 (x) の定義域に注意して、②の関数 (xの式y) の最大・最小を求める。 ✓基本 118 次の2次関数に最大値、最小値があれば,それを求めよ。 (1) y=4x2 (2) y=3x2+7 (3) y=-6x²+5 (3)y=-2(x+1)(−2≦x≦1) 軸が左外 ✓ 基本 119 次の2次関数に最大値、最小値があれば,それを求めよ。 (1) y=(x-5)2 (2)y=-(x+8)2 (3) y=3(x-1)^ (4) y=2(x+3)²-5 (5)y=-7(x-2)^+3 □基本 121 次の関数の値域と最大値、最小値を求めよ。 (1) y=3x2 (-2≤x≤3) (2)y=-2x2 (5)_y=2(x+1)²—1 (-2≤x≤1) 基本 120 次の2次関数に最大値、最小値があれば,それを求めよ。 (1) y=x²-2x-4 (2) _y=-x²+6x+2 (3) y=2x2+10x+3 (4) y=-3x2+4x-1 (2≤x≤3) (4) y=(x-3)^+2 (2≤x≤5) (6) y=-2(x-1)²+3 (0≤x≤3)

未解決 回答数: 1
数学 高校生

黄チャートの問題について質問です! 解説下部の蛍光ペンで引いた部分について、なぜ2<なのか教えていただきたいです。2‪√‬15が0<x<20の範囲内にあることを証明したいのはわかりますが、なぜここが2なのかわかりません。2‪√‬15は7と8の間にあるので17、それか、前の... 続きを読む

つよう 2次方程式の応用 基本例題 80 右の図のように,BC=20cm, AB=AC, ∠A=90° の三角形ABCがある。 辺AB, AC 上に AD=AE となるように2点D, E をとり, D, E から辺BCに 垂線を引き, その交点をそれぞれF,G とする。 長方形 DFGE の面積が20cm²となるとき,辺FG の長さを求めよ。 CHART & SOLUTION 文章題の解法 等しい関係の式で表しやすいように、変数を選ぶ 解答 FG = x とすると, 0 <FG <BC であるから 0<x<20 また, DF=BF=CG であるから 2DF=BC-FG DF= 20-x 2 長方形 DFGE の面積は よって ...... 20-x 2 ② 解が問題の条件に適するかどうかを吟味 FG = x として, 長方形 DFGE の面積をxで表す。そして、面積の式を 20 とおいた, xの2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 ゆえに 整理すると これを解いて •x=20 x2-20x+40=0 DF・FG= =10±2√15 ここで, 02√158 から B PRACTICE 902 D EF x=-(-10)±√(-10)2-1・40 よって,この解はいずれも①を満たす。 したがって FG=10±2√15 (cm) F 20-x ・x 10-8<10-2√15 <20, 2<10+2√15 <10+8 B A U=(5-3)(S-1 E D G C F E G 基本 66 定義域 會∠B=∠C=45°であるか ら, BDF, ACEG も直 角二等辺三角形。 ←解の吟味。 xの係数が偶数 → 26′型 3章 02/15=√60<√64=8 単位をつけ忘れないよう に。 9 2次方程式

回答募集中 回答数: 0