学年

教科

質問の種類

数学 高校生

高二数学 波線を引いている部分のabはどう計算して3abからabになったんですか?

B1 式と証明・高次方程式 (20点) 多項式P(x)=x+(k-2)x2+(3-2k)x-6 がある。 ただし, kは実数の定数とする。 (1) P(2) の値を求めよ。 また, P (x)を因数分解せよ。 (2) 方程式 P(x)=0 が異なる2つの虚数解をもつときんのとり得る値の範囲を求めよ。 また、このとき、2つの虚数解をα, β とする。 '+B'+2a+2/+3=11 であるとき kの値を求めよ。 配点 (1) 8点 (2) 12点 解答 (1) P(x)=x+(k-2)x2+(3-2k)x-6 P(2)=8+4(k-2)+2(3-2k)-6 = 0 <P(x) に x = 2 を代入する。 よって,P(x)はx-2 を因数にもち, P(x) を x-2で割ると、次のように 因数定理 なる。 x2+kx +3 x-2)x+(k-2)x2+(3-2k)x-6 -2x2 kx²+(3-2k)x P(x)は1次式x-αを因数にも (x-αで割り切れ ⇔P(α)=0 組立除法を用いて計算すると, のようになる。 kx² -2kx 3x-6 3x-6 0 k-2 3-2k -6 2 2k 6 1 k 3 10 したがって P(x)=(x-2)(x2+kx+3) 圈 P(2) = 0,P(x)=(x-2)(x2+kx+3 ) 多項式Aが多項式Bで割り あるとき,商をQ とすると A=BQ 完答への AP(2) の値を求めることができた。 道のり P(2) の値と因数定理から,P(x) が x-2 を因数にもつことに気づくことができた。A © 多項式の除法により, P (x) を因数分解することができた。 (2) (1)より, 方程式 P(x) = 0 は (x-2)(x2+kx+3)=0 すなわち x=2 または 3次方程式 P(x)=0の1 は,kの値に関係なく, x= 残りの解は2次方程式①の解で .....① x+kx+3=0 よって,P(x) = 0 が異なる2つの虚数解をもつ条件は, 2次方程式①が 虚数解をもつことである。 ①の判別式をDとすると D=k-4・1・3 = k²-12 2次方程式 ax2+bx+c=0 の判 別式をDとすると D=b2-4ac 40-

解決済み 回答数: 1
数学 高校生

⬇1枚目(2)の青で色をつけてる部分cos(90°+20°)=-sin20°になる理由がわからないです なぜsinが-になっているんですか? 2枚目は自分で書いたもので、sin=y/rでyはプラスなのでcos(90°+20°)=sin20°だと考えました まだ基礎が定着... 続きを読む

基本 例題 111 鈍角の三角比の値と式の変形 00000 (1) cos 135° × sin 120°×tan 150° ÷ cos60°の値を求めよ。 (2) sin 80° + cos 110°+sin 160°+cos 170°の値を求めよ。 p.181 基本事項 1,2 CHART & SOLUTION 角の三角比の扱い 直接, 値を求めるか, 鋭角の三角比に直す 280°=90°-10° 110°=90°+20° 160°=180°-20° 170°=180°-10° に着目して,各項を 10, 20°の三角比で表す。 開答 (1)与式 1/2×2×(1/13) = 別解(1) cos135°=cos(180°-45°)=-cos 45° sin120°=sin(180°-60°)=sin 60° tan150=tan(90°+60°)=- 1 tan 60° _cos60° sin 60° cos 135°=cos (90°+45°) =-sin45° sin120°=sin(90°+30° =cos 30° tan150°=tan (180°-30°) よって、 与式は (-cos 45°)xsin 60°x cos 60° sin 60° (2)与式)=sin(90-10°)+cos(90°+20°)+sin(180°-20° +cos (180°-10°) =cos 10°-sin 20°+sin 20°-cos 10° =0 =-tan 30° cos60°=cos (90°-30°) = sin 30° として計算してもよい。 |÷cos 60°=cos 45°= INFORMATION 鋭角の三角比に直す公式の覚え方 使えない 180F-6, 90°+0 の三角比の公式は,丸暗記するのではなく, 図と関連付けて理解し よう。下の図の点Pの座標に注目することで,公式を導くことができる。 18の三角比 90°+0 の三角比 y 34 sin(90°+0)=x sin (180°-9)=y 90°+0 =cós o 1806 =sin 0 1 (2,3) cos(180-0)=% tan (180°-0)= (-y,x) (x,y) cos(90°+0)=-y =-cos X V =-sin0 x JOH tan(90°+0)==y -1 -y O x1x #1 % =-tan 0 tan

解決済み 回答数: 1