学年

教科

質問の種類

数学 高校生

黄色でマーカーを引いた所の意味が分からないので教えてください🙇🏻‍♀️⋱

基本 89 例題 52 関数の極限 (4) ・・・ はさみうちの原理 00000 [3x] x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 (1) lim (2) lim (3*+5*) 1 x18 0.82 項目 基本 21 指針 極限が直接求めにくい場合は、 はさみうちの原理 (p.82 ①の2) の利用を考える。 (1) n≦x<n+1 ( は整数) のとき [x] = n すなわち [x]≦x<[x]+1 よって [3x]≦3x<[3x]+1 この式を利用してf(x) [3x]≦g(x) x (ただしlimf(x) = limg(x)) となるf(x), g(x) を作り出す。 なお、記号 [ ]はガ ウス記号である。 x→∞ (2)底が最大の項5" でくくり出すと(+5 (1/2)^1^(1/2)+1}* 1 = = (1/3) の極限と {(12/3) +1} の極限を同時に考えていくのは複雑である。そこで. はさみうちの原理を利用する。x→∞ であるから, x1 すなわち 01/12 <1と考 えてよい。 CHART 求めにくい極限 不等式利用ではさみうち (1) 不等式 [3x]≦3x<[3x]+1が成り立つ。 x 解答 x>0 のとき,各辺をxで割ると [3x] [3x] 1 ≤3< + x x x [3x] 1 1 ここで,3< + から [3x] 3- x x x x よって 3-1[3x] ≤3 x x lim (3-1) =3であるから [3x] lim =3 x→∞ x はさみうちの原理 f(x)Sh(x)g(x) T limf(x) = limg(x)=α X-1 ならば limh(x)=α 888 2章 関数の極限 x-x (2) (3*+5*)*=[5*{( 3 )*+1}}*=5{(3)*+1}* x→∞であるから,x>10<<1と考えてよい。 x 底が最大の項5でく くり出す。 このとき{(1)+1}°<{(号)+1F <{(12) +1(*) 4>1のとき,a<b すなわち 1<{(1)+1}*<(1) +1 ならば A°<A lim x→∞ {(1/2)+1} =1であるから 1であるから (2) +1-1 lim +1>1であるか ら, (*) が成り立つ。 x→∞ よって lim("+5) -lim5{(2x)+1} =5・1=5 x→∞ 練習 次の極限値を求めよ。 ただし,[]はガウス記号を表す。 052 x+[2x] (1) lim x→∞ x+1 (/)+(2)72 (2) lim{(3)*+(3)*}* p.95 EX 37、

回答募集中 回答数: 0
数学 高校生

こちら東京海洋大学の過去問(小論文2)です。問2、3の解き方を教えて頂きたいです。 ※解答なし

I あみくち ある海域の平らな海底上で,網口 (網の開口部) の横幅 12m の網 ひ が,一定の方向に1.2m/秒の速さで水平に曳かれている。 いま,ある 魚が網口中央の前方 (右下図の点A) で静止していたところ、 右下図 のように網が3mの距離まで近づいた時に網の存在に気付き、網から 逃れようとして遊泳を開始したとする。 魚は逃げるときに常に一定の 方向かつ一定の速度で海底面上を水平方向に遊泳し, 十分に長い時間 を遊泳し続けることができるものとする。 なお、一度網口より網の内 側に入った魚は必ず漁獲されるものとする。 また,ここでは魚の大き さは考えないものとする。 このとき, 次の問1から問3に答えなさ い。 なお, √2 =1.4, V3 =1.7 とし, いずれも解答の過程を併せて示しな さい。 12m 網口 網を曳く方向 網口から中に入ると漁獲される。 網の下や上からの逃避は考えない。 網を曳く 方向 問1 魚が網の存在に気付き, 網を曳く方向に対して垂直な方向(90°) に遊泳した。 魚が網から逃れるのに必要な遊泳速度 (m/秒) を求め なさい。 網を曳く速さ II 1.2m/秒 問2 魚が網の存在に気付き, 網を曳く方向に対して 45°の方向に遊泳 した。 魚が網から逃れるのに必要な遊泳速度 (m/秒) を求めなさい。 問3 魚が網の存在に気付き, 網を曳く方向に対して 30°の方向に 1.5 (m/秒) の速度で遊泳した。 この魚を漁獲することができる最小の えいもう 曳網速度 (網を曳く速度 (m/秒)) を求めなさい。 6m A 3m 6m (網を上から見た図)

回答募集中 回答数: 0