学年

教科

質問の種類

数学 高校生

例題75.2 私が書いた波線部は、y以外は◯回微分を( ◯ )というふうに書かないからd/dxのk乗というふうに書いているのですか??

2 基本 例題 75 第n 次導関数を求める (1) nπ (1) y=sin2x のとき,y)=2"sin(2x+ 2 nを自然数とする。 00000 sin(x+ であることを証明せよ。 /p.129 基本事項 重要 76, p.135 参考事項 (2) y=x”の第n 次導関数を求めよ。 指針 yan) は,yの第n次導関数のことである。そして,自然数nについての問題である から, 自然数nの問題 数学的帰納法で証明の方針で進める。 (2)では, n=1,2,3の場合を調べてy() を推測し,数学的帰納法で証明する。 注意 数学的帰納法による証明の要領 (数学B) [1] n=1のとき成り立つことを示す。 n=k+1のときも成り立つことを示す。 =kのとき成り立つと仮定し, [2] nπ (1)y(n)=2"sin2x+ 2 ① とする。 解答 [1] n=1のとき y'=2cos2x=2sin2x+ トル)であるから,①は成り立つ。 kл [2]n=k のとき,①が成り立つと仮定すると y = 2* sin(2x+ n=k+1のときを考えると,②の両辺をxで微分して d 2 kл _y(k)=2k+1cos2x+ ( D dx 2 ゆえに yk2'''sin(2x++1)=2*+sin{2x+(k+1)x} よって;n=k+1のときも ① は成り立つ。 [1], [2] から, すべての自然数nについて ① は成り立つ。 (2) n=1,2,3のとき,順に _y'=x'=1,y"=(x2)"=(2x)'=2・1,y" = (x3)"=3(x2)"=3・2・1 したがって,y(n)=n! ...... ① と推測できる。 [1] n=1のとき y=1! であるから, ① は成り立つ。 [2] n=kのとき, ①が成り立つと仮定すると y(k)=k! すなわち dk dxkx*=k! →(ス n=k+1のときを考えると, y=xk+1 で, (x+1)'=(k+1)xであるから dk k+ dk (d²xx*+1) = d² * ((k+1)x^} dockdx y (k+1)=- =(k+1)- dk dxk /dxkx=(k+1)k!=(k+1)! よって, n=k+1のときも ① は成り立つ。 [1], [2] から, すべての自然数nについて①は成り立ち 次の関数の第n次導関数を求めよ (2) y=^ y(n)=n!

回答募集中 回答数: 0
数学 高校生

赤で線を引いた所で、(n+1)(n+2)分のan+1がbn+1になる理由が分からないので教えてください🙇‍♀️

近畿大 ] 基本34 anの える。 例題 基本 la=2, an+1= an (1)n(n+1) ((2) an 39 an+1=f(n) an+g型の漸化式 n an+1によって定められる数列{a} がある。 -=bn とおくとき, bn+1 を bn とnの式で表せ。 をnの式で表せ。 4 an (1) bn= n(n+1)' bn+1= an+1 指針 (n+1) (n+2) で割る。 (n+1)(n+2) を利用するため, 漸化式の両辺を ・基本25 (2) (1) から bn+1=bn+f(n) [階差数列の形]。 まず, 数列{6} の一般項を求める。 n+2 (1) an+1= n 解答 an+1の両辺を (n+1) (n+2) で割ると an+1 (n+1)(n+2) 1 an n(n+1) + (n+1)(n+2) 2+1) (n+2)...(*) an -=bn とおくと n(n+1) bn+1=6n+ 1 (n+1)(n+2) (2)61= 1.2 bn=b₁+ =1+ a1 =1である。 (1) から, n≧2のとき 1 n-1 =1+ ◄an=n(n+1)bn, an+1=(n+1)(n+2)6n+1 を漸化式に代入してもよ い。 bn+1-bn 1 (n+1)(n+2) ◆部分分数に分解して,差 の形を作る。 1 k+2 n n+1 途中が消えて、最初と最 後だけが残る。 3n+1 k=1(k+1)(+2) =1+(1/2)+(赤) =1+ 3 1 = 2 n+1 2 n+12(n+1) ① b=1であるから, ① は n=1のときも成り立つ。よって an=n(n+1)bn=n(n+1)・ 3n+1 n(3n+1) = 2(n+1) 2 ①初項は特別扱い 上の例題で,おき換えの式が与えられていない場合の対処法 n+2 検討漸化式のαに が掛けられているから, 漸化式の両辺に×(nの式)をして n 【PLUS ONE f(n+1)an+1=f(n)an+g(n) [階差数列の形] に変形することを目指す。 (n+1)の式n の式 まず,漸化式の右辺にはnn+2があるが, 大きい方のn+2は左辺にあった方がよい あろうと考え、両辺を (n+2) で割ると D an+1 an A n+2 n n+2 2つの項 のうち, 左側の分母をf(n+1), 右側の分母をf(n) の形にするために, A 両辺を更に(n+1)で割ると、解答の(*) の式が導かれてうまくいく。

回答募集中 回答数: 0
数学 高校生

(1)の解答の最後の式の−1する理由が分かりません。 どなたか教えて頂けますと幸いです! よろしくお願いします🙇

例題 206 三角形の個数(2) A1, A2, A3, ..., A12 を頂点とする正十二角形が ある. この頂点のうち3点を選んで三角形を作るとき, 0 次の個数を求めよ. (1) 二等辺三角形 (2)互いに合同でない三角形 20 A12 *** A1 A2 A3 A11 A4 A10 A5 A9 As A A6 分線について対称になる. 考え方 (1) 二等辺三角形は、右の図のように底辺の垂直二等 ま A1 つまり、頂角にくる点を固定して, 底角にくる点ま のとり方を考えればよい. I A10 # A1 A12 について同様に考えれば,個数を求める ことができるが, 正三角形になる場合に注意する. (2) 頂点間の間隔に着目する. 右の図のように①と②は合同 状 ①と③は合同でない. 0101 012 200s 0.05 解答 (1) A, を頂角とする二等辺三角形は, 線分A1A7 に関して対称な点の組 Q # A4 正三角形は他の から見ても二等 角形なので (A2, A12), (A3, A11), (A4, A10), (A5, A9),セは て数えてしまう A9 A5 coolco (A6, A8) の5通りの A7 頂点は12個より, 5×12=60 (個) 03 このうち, 正三角形となる4個の三角形は3回重複正三角形とな 〇〇〇して数えている。 (A1, A5, Ag か 18 よって 60-(3-1)×4=52 (個)合 (A2, A6. Al (2) 1つの頂点をへ

回答募集中 回答数: 0
数学 高校生

(1)の解答にある最後の式の−1をなぜするのかが分からないです! どなたか教えて頂けますと幸いです。よろしくお願いします🙇

例題 206 三角形の個数(2) A1, A2, A3, ..., ある。この頂点のうち3点を選んで三角形を作るとき, A12 を頂点とする正十二角形が A12 A1 A2 A1 A3 A10 AA A9 A5 次の個数を求めよ. A8 A7 A6 (1)二等辺三角形 (2) 互いに合同でない三角形 分線について対称になる. 方 (1) 二等辺三角形は、 右の図のように底辺の垂直二等 A₁ A1 A12 について同様に考えれば,個数を求める つまり、頂角にくる点を固定して, 底角にくる点ま のとり方を考えればよい. 0 A10 # # AA T T ことができるが,正三角形になる場合に注意する. 3 (2) 頂点間の間隔に着目する. ① 右の図のように①と②は合同 で,①と③は合同でない. 695 01 01st 2000s 05.05 ■ (1) A」 を頂角とする二等辺三角形は, 線分A1A7 に関して対称な点の組 (A2, A12), (A3, A11), A1 (A4, A10), (A5, A9), Ag AA5 正三角形は他の から見ても二等 角形なので重 て数えてしまう blood (A6, A8) の5通り A7 頂点は12個より, 5×12=60 (個) して数えている。 このうち, 正三角形となる4個の三角形は3回重複 正三角形とな A5, Ag (A1, よって, 60-(3-1)×4=52 (個) (A2, A6, Al 2) 1つの頂点をへ

回答募集中 回答数: 0
数学 高校生

221.223.224が答えを見てもわかりません。 詳しく教えていただけると助かります。 また、場合の数と確率をとく時のコツがあれば教えて頂きたいです。

題 次の集 2 集合の要素の個数 (2) 113 : B 第1章 場合の数と確率 ② 221 デパートに来た客100人の買い物調査をしたところ, 商品Aを 買った客は 68 人, 商品Bを買った客は53人であった。 次のよう な客は,最も多くて何人か。 また, 最も少なくて何人か。 (1)A,Bの両方を買った客 (2)A,Bのどちらも買わなかった客 222 A={nnは48の正の約数}, B= {n|nは30以下の正の奇数}, C={n|n は 54の正の約数} とする。 このとき,次の集合の要素の個数を求めよ。 (1) A∩B, BC, CA (2) ANBOC (3) AUBUC c) 2231から20までの整数のうち、次の数の個数を求めよ。 (1)3,5,8の少なくとも1つで割り切れる数 (2)3でも5でも8でも割り切れない数 (3)3または5で割り切れるが,8で割り切れない数 母の 発展 224 ある大学の入学者のうち、他のa大学, b大学, c大学を受験 した者全体の集合を,それぞれA,B,Cで表す。 n(A)=65,n(B)=40,n(A∩B)=14,n(C∩A)=11, n(BUC)=55, n(CUA)=78, n(AUBUC)=99 のとき、次の問いに答えよ。 (1) c大学を受験した者は何人か。 (2)a 大学, b 大学, c大学のすべてを受験した者は何人か。 (3)a 大学, b 大学, c大学のどれか1大学のみを受験した者は 何人か。 ヒント 2242) まず, n (B∩C)を求める。

回答募集中 回答数: 0
数学 高校生

29.3 このような証明方法でも問題ないですよね??

基本例題 29 絶対値と不等式の不 82 00000 次の不等式を証明せよ。 明などの基本の (1)|a+b|≦|a|+|6|| (2) |a|-|6|≧|a+b) (3) la+b+cl≦lal+10+| 指針▷(1) 例題 28 と同様に,(差の式) ≧0は示しにくい。 重要 de+pas\\&+D\² $328 30 解答 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0の A≧B⇔A'≧B'A'-B'≧0の の方針で進める。また、絶対値の性質(次ページの①~⑦) を利用して証明してもよい。』 (23)と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 *****RO CHART 似た問題 11 結果を利用 ② 方法をまねる (1)(|a|+|6|)²-la+b=a²+2|a||6|+b²-(a²+2a6+62) ◄|A|²=A² <|ab|=|a||6| 2 =2(|ab|-ab)≧0 よって la+b≧(|a|+|6|) 2 |a+b≧0,|a|+|6|≧0から la+6|≦|a|+|6| 別解] 一般に,一|a|≦a≦|a|,-|6|≦6≦|6| が成り立つ。 H この不等式の辺々を加えて (a+16)≦a+b≦|a|+|6| したがって |a+6|≦|a|+|6| de (2)(1) の不等式での代わりにa+b, bの代わりに―6と おくと |(a+b)+(−b)| ≤|a+b|+|-b| de+pas ゆえに |a|-|6|≦la+6| よって |a|≧|a+6|+|6| 別解 [1] |a|-|b|<0 のとき よって a+b≧0であるから,|a|-|6|<|a+6|は成り立つ。 [2] |a|-|6|≧0のとき |a+b1²-(|a|-|6|)²=a²+2ab+b²-(²-2|a||6|+62) =2(ab+lab)≧0 よって (|a|-|6|)2≦|a+b2 |a|-|6|≧0,|a+b≧0であるから [1], [2] から lal-1b|≤|a+bl (3) (1) の不等式での代わりにb+c とおくと la+(b+c)|≦la|+|b+cl a+b+cl≦|a|+|6|+|c| 05 608- -B≦A≦B +S) ≤ ( ⇔[A]≦B ズームUP参照 DOCU (ay lal+1b/+/c/ a66650s |a|-|6|≦la+6| この確認を忘れずに。 |A|≧A, AI≧-A から -|A|≦a≦|A| P |a|-|6|<0≦|a+6 [2] の場合は, (2) の左辺, 右辺は0以上であるから, (右辺) (左辺)20を示 す方針が使える。 +04 105 (0+ 14-08- 133c¹2 (1) の結果を利用。 (1) の結果をもう1回利用。 (|b+cl≦|6|+|c|) 1+RB+++

回答募集中 回答数: 0