学年

教科

質問の種類

数学 高校生

83の(1)は左が自分の解答で右が模範解答なのですが僕の解答でもOKですか?

7 者還 』 2 割った余り で表れた Mg (07 鳥根県大 を | 2放S00MSR72 7 西由学院大) ルイと 紗 。了は正の整数で 2016ニ2*ッーゥ> 7 | 84 っ (である。 また, 2016 を 2 館到で な 29。 | 16 同志社大〕 1) とについての 2 次方程式 ダー(g一9のx+g+sこ0 の2 つの解がともに正 の整数となるような定数の値を求めょ。 tt6 京都産友 (9) 係数@。 2が整数である3 商方程式 ext上上6z1ニ0 が2つの上数角 と1つの整数解をもつ。 これを満たす整数の組 (Z。ぁ) は 昌和) のうちogの値が最大となる組は 【C有8 (10 早稲田大〕 2十174z十231 聞 SEつい (7) が整数となるような自然数>は 個存在する。また, これら ルー 個の自然数のぅ ちで最も大きいものをヵ* と表すと, ニー <のり=引コでぁる。 (15 上膨大〕 Ke Clear。 <⑳3 前 /の=のす6f直cz は。 ニュ ゴル 2 で東数仁 0 (ED 還 アプ(一2ニー をとるものとする。 | (1!) の の とをそれぞれヶ。s,?の式で表せ。 / (2) すべての整数み々について, /(⑦) は整数になることを示せ。 【〔08 岡山大 | 8 G) ヵが正の偶数のとき、 ダー1 は3 の倍数であることを示せ。 4舎) (⑫) ヵを自然数とする。2"二1 と 2%ー] は世に来であることを示せ。 / 湖着 (3 ヵ, 9を異なる素数とする。2!コーューニ7g* を満たす のの組をすべて求 大) ) 2 15 九州大} 14 整数の種々の問題= = = 31 人@

解決済み 回答数: 1