学年

教科

質問の種類

数学 高校生

(2)を解く時どうしたらこの方法で解くって思いつきますか?なんで割り算したら答えが求めれるんですか?

出題されます。 含む単独に 1+√3i I= ,y=- 2 1-√31 (2) I= このとき、次の式の値を求めよ. 3+√3i 2 より2x-3=√3i する 3+√3i (7) x+y (1) xy (ウ)+y3 (エ) y すなわち, 両辺を平方して, 4x²-12x+12=0 x2-3x+3=0 を解に x=- 2 もつ2次方程式 IC + I y (2)m= 3+√3i 2+3+2 わり算をする 2 のとき,r-4x2+6x-2の値を求めよ. x²-3x+3)x4 -4x2+6x-2 -33 +3.2 3x3-7x2+6x 3x3-9x2+9x 2x²-3x-2 精講 2x²-6x+6 3x-8 (1) 2つの複素数a+bi, a-bi(a, bは実数)のことを,互いに共 役な複素数といいます。 このx,yは,まさに共役な複素数です。 共役な複素数2つは、その和も積も実数というメリットがあるの で, 対称式の値を求めるときにはまず和と積を用意します。 (2) このような汚い (?) 数字をそのまま式に代入してしまってはタイヘンで す. そこでこのx を解にもつ2次方程式を作り, わり算をするか, 次数を下 げるかのどちらかの手段で計算の負担を軽くします. (I・A8) 上のわり算より, 4-4x2+6x-2=(x²-3x+3)(x2+3x+2)+3x-8 このxに与えられた数値を代入すると, '-3x+3=0 となるので (与式) =3 -3(3+√31)-8-3√31-7 8= 2 2 (別解) (次数を下げる方法) 解答 2 基本対称式 -=1 4 基本対称式 (1)(x+y=1+3i+1-3-1 2 (イ)ry=1+√3i1-√3i_1-32 2 2 (ウ)+y=(x+y-3xy(x+y) =1-3・1・1=-2 I_x'+y^=(x+y)2-2.xy <対称式は基本対称式 で表せる (エ) y + =-1 x y xy xy <対称式 実はこのx,yはタダ者ではありません。 参考 x+y=1, ry=1より,x,yを解にもつ2次方程式は t-t+1=0 (21) 両辺に t+1 をかけると +1= 0 ∴.t=-1 よって,r'=y'=-1. すなわち,r=y=1 このように,あるnに対して, "=1となるは x=3x-3 だから 4-4x2+6x-2=(3x-3)2-4x2+6x-2 =5x2-12x+7=5(3-3)-12x+7 =3r-8-3(3+y3i)-8=3√gi-7 2 2 ポイント 他にも, x= --1±√3i 2 (x=1), x=±i (x^=1) などがよく入試に 演習問題 16 I. 共役な複素数の和と積は実数 Ⅱ. 複素数を整式に代入するときは、その複素数を にもつ2次方程式を作り, 整式をその2次式でわ て, その余りに代入する (1) 次の問いに答えよ. r=1+i liのとき

解決済み 回答数: 1
数学 高校生

(2)の次数を下げる というのが理解できません どういうことなのか教えてください

基礎問 16 複素数の計算(II) (2)メ 31 でてきます。 (1) x= 1+√3i 1-3i (2) x= 2 2 のとき,次の式の値を求めよ. 3+√3i 2 より2x-3-√ する (7) x+y (1) xy (1) x³ + y³ (I) IC 両辺を平方して、 412z+120 すなわち、 -3x+3-0 を含む項を単独に x= 3+√3i -,3iを解に 2 もつ2次方程式 IC y (c) 2+3x+2 3+√3i ((2) x=- のとき、+6.z-2の値を求めよ. 2-3x+3)r' -4x+6x-2 <わり算をする 2 x-3x3+3x² 3r³-7x²+6 ( 33-9x2+9x (1)2つの複素数a+bi, a-bi (a, b は実数) のことを互いに共 精講 役な複素数といいます。このx,yは,まさに共役な複素数です。 共役な複素数2つは,その和も積も実数というメリットがあるの で、対称式の値を求めるときにはまず和と積を用意します。 2x²-3x-2 2x²-6x+6 3x-8 第2章 (2) このような汚い (?) 数字をそのまま式に代入してしまってはタイヘンで す。そこでこのェを解にもつ2次方程式を作り. わり算をするか, 次数を下 げるかのどちらかの手段で計算の負担を軽くします。 (数学ⅠA8 解答 (1) (7) x+y=1 + 1+√3i 1-vi i=1 基本対称式 2 2 (イ) ry=- 1+√3i1-√3i_1-3z 2 2 4 =1 基本対称式 (ウ)+y=(x+y-3.ry(x+y) =1-3・1・1=-2 [対称式は甘 上のわり算より。 2-4x+6x-2-(r³-3r+3)(x²+3x+2)+3x-8 この上に与えられた数値を代入すると, -3 +3=0 となるので -3(3+23i)-8=3/31-7 与式=3 与式=30 (別解) (次数を下げる方法) 3-3 だから 2 -4x+6x-2=(3x-3)-4x²+6x-2 -5r-12r+7-5(3x-3)-12r+7 =3x-8=3 13+√3i 2 -8= 3√31-7 2

解決済み 回答数: 1
数学 高校生

次の(4)の問題が何をしているかがよくわからないのですがどなたか解説お願いします🙇‍♂️

164 四面体 (Ⅱ) 座標空間に2点A(2, 2, 3), B(4, 3, 5) をとり, AB を1辺と する正四面体 ABCD を考える. (1) AB, AB AC を求めよ. よって, PC・PD=9t-9t+- また,|PC|=|AC-tAB| =|AC-2tAB・AC+f|AB =9t2-9t+9 (3)|PD|=|AD-tAB=912-9t+9 だから PC・PD (2)辺AB をt (1-t) に内分する点をPとするとき, PC・PD, |PC を tで表せ. (3)∠CPD=0 とおくとき, Cos を tで表せ. (4) cose の最小値と, そのときのtの値を求めよ. cos 0= |PC||PD| 18t2-18t+9 2(9t2-9t+9) 2t2-2t+1 212-2t+2 1 1 (4) cos 0-1- =1 2t2-2t+2 精講 (1) AとBしか与えられていないのに, AB AC が求まるのか?と 思った人は問題文の読み方が足りません. ☆+ 3 2 <わり算をすること で,分子の次数を下 げる 「正四面体」と書いてあります. 正四面体とは, どのような立体 でしょうか. よって、t=1/12 のとき,最小値 / (2)163 のポイントをもう一度読みなおしましょう. (3)空間でも, ベクトルのなす角の定義は同じです. 解答 (1) AB= (2,1,2) だから, |AB|=√4+1+4=3 また, △ABCは正三角形だから, ∠BAC=60° |AC|=|AB|=3 ..AB.AC=|AB||AC|cos 60° =3312= 9 3.3.11-11 2 (2) PC=AC-AP=AC-tAB PD=AD-AP=AD-tAB ∴. PC・PD=(AC-tA) AD-tAB) B =AC・AD-tAB AC-tAB・AD+2|AB|2 AACD, △ABDも正三角形だから AC・AD=AB・AD=AB・AC=1/27 「ポイント 正四面体とは, 4つの面がすべて合同な正三角形であ る四面体 演習問題 164 正四面体の性質 注 正三角すいと正四面体は異なります . 正三角すいとは,右図のように, 1つの面は正三角形, その他の面は, 合同な二等辺三角形であるような四面 体です. D 正四面体 ABCD の辺 AB, CD の中点をそれぞれ, M, N とし, 線分 MN の中点を G, ∠AGB=0 とするとき, AB=2 として次の 問いに答えよ. (1) GA, GB AB, AC, AD を用いて表せ. (2)/ |GA|, |GB|, GA・GB の値を求めよ. ( 3 ) cos0の値を求めよ.

解決済み 回答数: 3
数学 高校生

(4)の解説でなんで割ったら最小値が求められるのかわからないので教えて欲しいです!!

基礎問 256 第8章 ベクトル 165 四面体 (Ⅱ) 座標空間に2点A(2, 2, 3), B(4, 3, 5) をとり,ABを1辺と する正四面体 ABCD を考える. (1) AB, AB AC を求めよ。 (2) 辺AB をt (1-t) に内分する点をPとするとき,PC・PD |PC をt で表せ. △ (3) ∠CPD=0 とおくとき, coseをtで表せ。 (4) cose の最小値と,そのときのtの値を求めよ。 精講 (1) AとBしか与えられていないのに, AB AC が求まるのか?と 思った人は問題文の読み方が足りません。 「正四面体」と書いてあります. 正四面体とは,どのような立体 でしょうか. (2)164のポイントにあるように, 平面 PCD で切って平面の問題にいいか ます。 (3)空間でも, ベクトルのなす角の定義は同じです. 解答 正四面体だから (1) AB= (2,1,2) だから,20 |AB|=√4+1+4=3 また, △ABCは正三角形だから, ∠BAC= =2, |AC|=|AB|=3 :.AB.AC=|AB||AC|cos/5 3 1 9 =3.3. 2 2 (2) PC=AC-AP=AC-tAB PD=AD-AP=AD-tAB B △ACD, △ABDも正三角形だから AC·AD=AB·AD=AB·AC= 9 1-10 正四面体の性質 2 よって、PC・PD=912-9t+2 9 また,|PC|=|AC-tAB|=|AC|-2tAB・AC+AB 257 A 92-9t+9 (3)|PD|=|AD-tAB=92-9t+9 だから 正四面体だから (1) PC・PD 18t2-18t+9 cos = |PC|PD| 2(912-9t+9) 2t2-2t+1 2t2-2t+2 (4) cos0=1- 1 COS 212-2t+2 すべて等し距離 品 1 +- + 2 <わり算をすることで, 分子の次数を下げる 1 よって,t=1/2 のとき,最小値 1/3 ポイント 正四面体とは, 4つの面がすべて合同な正三角形であ る四面体 注 正三角すいと正四面体は異なります. 正三角すいとは, 右図のように, A 1つの面は正三角形, その他の面は, 合同な二等辺三角形であるような四面 体です. B 1-t 演習問題 165 ・PC・PD=(AC-AB) (AD-AB) =AC・AD-tAB・AC-tAB・AD+LAB 1 正四面体 ABCD の辺 AB, CD の中点をそれぞれ, M, Nとし, 線分 MN の中点を G, ∠AGB=0 とするとき, AB=2 として次の 問いに答えよ. (1) GA, GB を AB, AC, AD を用いて表せ. (2)|GA, GB GA・GB の値を求めよ. (3) cose の値を求めよ. このとき 第8章

解決済み 回答数: 1