学年

教科

質問の種類

数学 高校生

(2)について質問です。下線を引いているようになぜm+r+1/n≦1とm+r+1/n≧1で場合分けをするのですか?またその後に線を引いている(n-r)k+r(k+1)はどのようにして計算したら出てくるのかも分かりません💦どなたか教えてほしいです

第9章 整数・数学と人間の活動 40 よって、等式①は成り立つ。 (1)〜(曲)より、すべての実数xに対して, 等式①は成り 立つ。 [x]≦x<[x]+1 より [x] <x<[x]+1 n n [x] は整数であるから,[nx] は, nk, nk+1,nk+2, .........nktn-1 (kは整数)のいずれかで表される. [nx]=nk+r(r=0, 1, 2,…, n-1) kt1≦x<k+r+1 とすると,①より ......③ n n ここで,m=0,1,2, …………, n-1 として ③の各辺 に皿を加えると, n m+r m k+ ≦x+ m+r+1 <k+ n n n m+r+1 22 m+r k≦k+ n m n -≦1,すなわち,0≦m≦n-r-1 のとき, -≤ x + <h+ m+r+1 ≦k+1 n より[x+m-k =k n m+r,すなわち, n-r≧m≦n-1のとき, n m k+1≦k+m+rsxt. <k+ n m+r+1 <k+2 n n より,[x+m]=k+1 n したがって, [x]+[x+/-]+[x+2]+... + [x+ n-r n ] + [x x+ n-r n +x+ n. n =(n-r)k+r(k+1)=nk+r また②より よって、等式 [nx]=nktr [x]+[x+2]+[x+2]+....+[x+タリー[28] は成り立つ. 注 (1)において, m = 0, 1, 2 として ktmtr r≤x+. m m+r+1 <h+ のときの [x+7] 3 3 3 3 の他に着目すると, m+r+11 のとき [+] 3 mtr = 21のとき, [x+k+1 m =k r=0 のときは,これを満 すmの値はない。 kとなるのは, [x], n-r k+1となるのは、 n の(n-r) 個 [ x + 1 = 1 ] 0 n- の個

回答募集中 回答数: 0
数学 高校生

この、右のページでやっていることが、なぜ成り立つかわかりません

370 340 第9章 整数の性質 不定方程式 y 次のような方程式を考えてみます. -2231x+409y=1 2231x+409y=1 ...... (*) これを満たす実数x、yの組は無数に存在しま す.実際,この式を 1 409 この直線上すべての 点(x,y) が解となる 1 2231 1 y=-- x+· 2231 409 409 -x と変形すると,これはry 平面上の直線となるの で,この直線上のすべての点(x,y) がこの方程式の解となるわけです. 一般に,文字の数が等号の数より多い方程式は解を定めることができません。 このような方程式のことを不定方程式と呼びます.特に,(*)のようにxy の一次式で表されるような不定方程式を一次不定方程式と呼びます. さて,ここで考えたいのは次のことです. 不定方程式 2231x+409y=1 ......(*) は りがともに整数であるような解(整数解)を持つだろうか? これは意外に難しい問題です。 実数の範囲では無数に解を持ったとしても 整数の範囲では解を持つかどうかすらアヤシイのです. 結論から先に言えば (*)の整数解は存在する のです.では,それをどうやって示せばいいのでしょう. 妖怪が存在すること を示す最もストレートな方法は,妖怪を捕まえて連れてくることです. それと 同じで,整数解の存在を示す一番の方法は、 具体的に整数解を作ってみせるこ とです.ここで役立つのが,先ほど扱ったユークリッドの互除法なのです. (*)のxyの係数 2231 と 409 に注目し, これをユークリッドの互除法の 要領で「割り算」 していきましょう. すると, 3段階目で余りに1が現れます. 2231=409×5+186 ......① 409=186×2+37 186=37×5+1 1が現れた! ...... 2 余りに1が現れたということは, 2つの数の最大公約数は 1 つまり2数は 互いに素であるということです. これはとても重要なポイントなので、頭に入 ておいてください 341 ことは,これらの式を逆にたどるよ にして1を元の2数を用いて表す」 ことです。 具体的には,次のような作 になります。 ⑦→ ④→ ← 1=186-37 × 5 ③ より =409×(-5)+186 × 11 186-409-186×2)×5②より37=409-186×2 =409×(-5)+(2231-409×5)×11-0) =2231×11+409 × (-60) - 186-231-409×5 まず、③により1が 「186と37」 を用いて表され(ア), そこに②を使うと 「409 と 186」 を用いて表され(イ), さらに①を使うと1が 「2231409 」 を用いて表されます(ウ) ウの式は,まさに(*)の整数解 (の1つ)が であることを教えてくれます。 x=11,y=-60 さて、先ほど注意したように,このようなことができたのは, そもそも の係数 2231 409 の最大公約数が 1 つまり互いに素であったからです。 つまり、一般に次のことが成り立つことがわかるのです. 不定方程式の整数解 bが互いに素な整数であるとき 1次不定方程式 ax+by=1 は整数解を持つ ユークリッドの互除法を用いれば, 一次不定方程式の整数解を具体的に作り 出すことができます.ただし,このやり方で見つかる整数解は、あくまで不定 方程式の整数解 「の1つ」であり,それがすべての解であるわけでも、あるい は最もシンプルな解であるわけでもないことには注意してください。 当然次なる興味は,1次不定方程式の「すべての整数解」を求めることは きないかということになります.この「すべての整数解」のことを次 定方程式の一般解といいます。その求め方は後ほど詳しく説明しますが、実 「すべての」 整数解を求めるためには, 少なくとも「1つの」 整数解を自 求めなければなりません.そこで,まずは先ほどの作業で「1つの」整数 求める練習をしっかりとしておきましょう。

回答募集中 回答数: 0
数学 高校生

うすくまるでかこっているところが問題によって下記かがちがくてよくわかりません。教えてください。

なったと判断できる。 28 この地域のイノシシが寄生虫Aに感染している割 よって、 区間の幅が狭いのは、信頼度95%の信頼 区間である。 合を シシの感染個体の比率は 198 396 対立仮説は すると、帰無仮説は0.55, 0.55 である。 また、 今回の調査で捕獲したイノ = 0.5 である。 1 (2) (1)より, 信頼区間の両端は 0.04 12.56 1.96 =12.56±0.01568 √25 □2 帰無仮説が正しいとすると, 標本における感染個体 0.55.0.45 の比率がの分布は正規分布 N (0.55, と 396 見なせる。 よって P(-0.55 ≥ 0.5-0.551) よって, 信頼度 95%の信頼区間は 12.54432 d≦12.57568 小数第3位を四捨五入すると, 12.54mm以上 12.58mm 以下となる。 (3) 信頼区間の幅を0.008mm以下にするから,計 測回数をnとすると, (1) より 0.55 0.05 =PI 0.55.0.45 0.55-0.45 V 396 396 =P(Z|≧2) =2P(Z≧2) =0.04550 <0.05 したがって, = 0.55 という帰無仮説は棄却される。 すなわち、この地域のイノシシが寄生虫 Aに感染し ている割合は先行調査と異なると判断できる。 Let's Challenge 2 1_(1) 標本平均の平均は母平均に等しいから E(X) = 400 標本の大きさが36であるから, 標本平均の標準 偏差は 70 0.04 2.1.96. 0.008 よって n≧384.16 ゆえに、少なくとも385回計測すればよい。 布は,正規分布 N (0, と見せる。 3 (1) 帰無仮説は m = 0, 対立仮説は m≠0 である。 (2) 帰無仮説が正しいとすると, 標本における重さ の平均から表示されている値を引いた値m' の分 2.52 225 よって P(m′-01≧ 0.32) P ( \m\ 0.32 2.5 2.5 225 SHP225 =P(Z≧1.92) =2P(Z≧1.92) 0.05486>0.05 したがって, m = 0 という帰無仮説は棄却されな いにで (1)

回答募集中 回答数: 0
数学 高校生

125(2)の abcdの計算の仕方がよくわかりません 解説よろしくお願いします!

□125 腐食連鎖 次の文章を読み、以下の問いに答えよ。 植物が太陽エネルギーを用いて大気中の炭素から合成した有機物の一部は、植物を 直接とする植食動物や、さらにこの動物を食べる肉食動物の生命活動を支えるエネ 直接に食う食物連鎖の流れをたどる。一方, 植物が合成した有機物の一部は、枯れ ルギーとして消費されながら、生食連鎖(植物生体を出発点とし、生きている生物を 業や枯れ枝などとして地表に堆積し、動物の遺体や排出物とともに、微生物などが分 解する腐食連鎖に取り込まれる。 このように、生態系を構成するそれぞれの栄養段階 をつなぐ食物連鎖は、生食連鎖と腐食速鎖から成り立っている。 下図は、これらの を模式的に示したものである。 生食連鎖 純生産量 総生産量 (ア) (イ) 摂食 (ウ) 成長量 (生産者) 生産量 (エ) (オ) 摂食 成長量 (カ) 枯 不消化排出量 死 量 (消費者) 腐食連鎖 (分解者) ある照葉樹林では,総生産量の70%が生産者自身の(ア)として消費されていた。 また1ha あたりの1年間の(イ)は60kg, 同じく枯死量は10800kg,現存量の 増加量 (成長量) は 3540kgであった。 この森林で1年間に生産者自身の (ア)とし て消費された有機物の量は,1ha あたり (a) kg, 純生産量は(b)kgであり, この純生産量のうち植食動物に摂取される量は (c) %である。 また、この森林に おいて生産者から腐食連鎖に流れる有機物の量は, 生食連鎖に流れる有機物の量の (d) 倍である。 (1) 図のア~カにあてはまる適切な語句を,下の語群からそれぞれ選べ。ただし、同 じ語句を何回選んでもよい。 また,図のアイは文中のア, イと対応している 図中の枠の面積は実際の値とは異なる。 〔語群] 総生産量, 純生産量, 光合成量,呼吸量, 成長量, 被食量, 同化量, 死亡量, 捕食量, 現存量 (2)図を参考にして、文中のadに適切な数値を入れ、文章を完成させよ。 ただし、 答えに小数を含む場合は,答えを四捨五入して小数点以下第1位まで書け。 (京都大)

回答募集中 回答数: 0