学年

教科

質問の種類

数学 高校生

この問題の表とグラフまでは書けたんですけど、グラフのa>4、a=0ってaの値について書いてあるこれはどういう意味ですか?? あと、この定数aはX=1、3の事ですか?? 誰かこの問題について解説お願いします🤲

3次方程式の実数解の個数 (2) 297 『(x)3 (定数) に変形して処理 基礎例題 177 ジのッラフと 3次方程式 x-6x*+9x=a の異なる実数解の個数が。定数αのとる値に よって,どのように変わるか調べよ。 基礎例題 176 r発展例題 184 OOO の個数 CHART Q GUIDE) る。 方程式f(x)=a の実数解の個数 7章 y=f(x)のグラフと直線 y=a の共有点の個数を調べる 1 (x)=x°-6x°+9x の増減を調べ, y=f(x) のグラフをかく。 2 直線 y=a(x軸に平行な直線)を上下に動かして、 1でかいたグラフとの共有 点の個数を調べる。 36 日解答田 f(x)=x°-6x°+9x とすると f'(x)=3x°-12x+9 -3(x-1)(x-3) f(x)=0 とすると いるす x 1 3 0 るま0いが 0 極大 f(x) | 4 極小 0 x=1, 3 y=f(x)のグラフは固定 した状態で,直線 y=a をaの値とともに上下に動 かしながら, y=f(x) の f(x)の増減表と y=f(x) のグラフは, a>4 右のようになる。 4 a=4 口このグラフと直線 y=a の共有点の 個数が、方程式の実数解の個数に一致 するから a<0, 4<a のとき1個; のとき2個; のとき3個 グラフとの共有点の個数を 0<a<4 調べる。 a f(x) が極大, 極小となる 点を,直線 y==a が通る ときのaの値が実数解の個 数の境目となる。 a=0 x 0 1 3 a=0, 4 ト a<0 0<a<4 Lecture 方程式 f(x)=g(x)の異なる実数解の個数 方程式 f(x)=g(x) の異なる実数解 a, B, Y, ソ=f(x)と y=g(x) のグラフの共有点のx座標であるから, 次のことがいえる。 は、 ソ=g(x) y=f(x) y=f(x) と y=g(x) の 方程式f(x)=g(x) の 異なる実数解の個数出 グラフの共有点の個数 上の例題は,g(x)=a の場合である。 なお, 定数aが左辺 にある場合は,まず,右辺に移項して f(x)=a の形にする。 B Y X EX 177 3次方程式 x°+3x-9x-a=0 が異なる3つの実数解をもつとき, 定数 aの値の範囲を求めよ。 関数の増減。グラフの応用 1

未解決 回答数: 1
数学 高校生

この接戦の方程式⑴番の問題でなぜy-1=4(x-0)になるのかわかりません。解説お願いします。

基礎例題166 ~発展例題179 282 接点や傾きが与えられた場合 接線の方程式(1) 基礎例 関数 y= 接線の方を 基礎例題169 (2) 傾きが-4である接線 CHAE Q G (1) グラフ上の点 (0, 1) における接線 CHART QGUIDE) 曲線 y=f(x) 上の点(a, f(a))における接線 傾き f'(a), 方程式 y-f(a)=f"(a)(x-a) (2)は次の要領で求める。 1 y=f(x) とし, 導関数f'(x) を求める。 2 接点のx座標をaとし, f'(a)=(傾き) となる aの値を求める。 3 接点の座標を求め,公式を利用して接線の方程式を求める。 日解答田 (ローx) 日解き f(x)=-2x°+4x+1 とすると (1) f(0)=4 であるから, 求める接線の f(x)=-4x+4 F(x)= 」と同意 一前ページの[例と 接線の傾きf(0) をむ 12) 『関数」 におけ 方程式は ソー1=4(x-0) すなわち 公式に当てはめる。 y=4x+1 (2) 接点のx座標をaとし, f'(a)=D-4 とすると 1 9 -4a+4=-4 すな 4 ーf(a)=-4a+4 ーf(2)=-2-2"+4-2+1 ゆえに a=2 また f(2)=1 1 0 2 x この よって, 求める接線の方程式は ソー1=-4(x-2) y=f(x) =1 すなわち 一接点の座標は(2, 1) 整理 y=-4x+9 Lecture 導関数の図形的意味 ゆ し 関数 y=f(x) の x=a における微分係数 f'(a) は, ソ=f(x)のグラフ上の点(a, f(a)) における接線の傾きを表す。 したがって,導関数f'(x) は, もとの関数 y=f(x) のグラ フ上の各点における接線の傾きを与える関数ともいえる。 例] f(x)=-2.x°+4x+1 のとき 例 傾きが -4+4 y=f(x)- 1 上の例題の関数。 f(x)=-4x+4 ソ=f(x) のグラフ上の, x座標がtである点における接線の 傾きは -4t+4 である(右の図参照)。 10112 微分

回答募集中 回答数: 0
数学 高校生

この問題が解説を見ても分かりません( ; ; ) 考え方を教えてください

した証明(2) V2 が無理数の証明 基礎例題 57 基礎例題56 OO0 V2 は無理数であることを,背理法を用いて証明せよ。ただし,整数 n につ いて,n°が偶数ならばnは偶数であることを用いてよい。 CHART Q GUIDE) 証明の問題 直接も対偶利用もだめなら 背理法 3章 3One ロ 背理法で、前ページの例題 56 と同様に /2=r (rは有理数) とおいてもうまくいか ない。そこで,ここでは 9 約分できる数を除外するため。 m V2 = (m, nは1以外の正の公約数をもたない自然数) とおく。 n この等式の両辺を2乗して, 矛盾を導く。 2>0であるから, 自然数とした。 無理 田解答田 2 が無理数でない, すなわち V2 が有理数であると仮定する。 。 無適 このとき,/2は, 1以外の正の公約数をもたない自然数 m, n 定する 49, ! 一有理数とは,整数 a, b (6キ0) を用いてーの形 のを用いて V2- m と表される。 で表される数のこと。 参考 2つの整数 i,jの 最大公約数が1のとき,i とjは互いに素であると いう(数学A参照)。 n 積」 のから m=V2n 両辺を2乗すると m°=2n° .… 日 よって, m’ は偶数であるから, mも偶数である。 一キxS ゆえに,m はkを自然数として m=2k 3を2に代入すると ゆえに,n° は偶数であるから, nも偶数である。 m とnがともに偶数となることは, mとnが1以外の正の公約 数をもたないことに矛盾する。 よって,V2 は無理数である。 3 と表される。 4k°=2n° よって n=2k° ←mとnが2を公約数と してもつことになる。 Lecture 「nが偶数(奇数)ならばnは偶数(奇数)」 「n°が偶数ならばn は偶数」 実際,Aの対偶は nが奇数ならば n=2k+1 (kは整数)と表され よって,n°は奇数であるから, ④の対偶は真である。 また,のの逆「n が偶数ならばn'は偶数」も真である。 同様に,「n°が奇数ならばnは奇数」やその逆「nが奇数ならば n'は奇数」 も真である。 これらの事実は覚えておくとよい。 Aは,この命題の対偶を考えると証明できる。 の この大 n°=4k°+4k+1=2(2k°+2k)+1 -2°+2kは整数であるから, 2(2k°+2k)+1 は奇数。 「nが奇数ならばn'は奇数」 EY 57° /3は無理数であることを証明せよ。ただし, 整数 n について, n° が3の 【類富山県大,北星学園大) 倍数ならばnは3の倍数であることを用いてよい。 |命題と証明

未解決 回答数: 1
数学 高校生

kってどこからでてきたんですか?

QGUIDE) 2直線 ax+ by+c=0, dx+ey+f=0 の交点を A(ax+ by+c)+(dx+ey+f)=0 (kは定数) 図 2で求めたんの値を国の方程式に代入し, x, yについて整理す 例えば,上の解答の③は,kの値を変化させると,直線①, ② の交点を通ぶ は,2直線の交点を通る直線を表す(直線 ax+by+c=0 は表すことができない 2直線の交 のの交点 の, x+2y-1=0 基礎例題80 2直線 2x-3y+4=0 トム 2 UP B(2, 3) を通る直線の方程式を求めよ。 題にお GHART QGUIDE) I 0, のの交点を通る直線の方程式を とおく。 が2 次の2 限点1 を変 ここで ことが k(2x-3y+4)+(x+2y-1)=0 日解答田 2直 をを定数として,方程式 (2x-3y+4)+(x+2y-1)=01 V B(2,3) から 交点Aのよ の 式0.0 の 3 り の表す図形は,2直線 ①, ② の交 点Aを通る直線である。 直線3が点B(2, 3) を通るとき k(2-2-3-3+4)+(2+2-3-1)=0 3-1 よって、 x|の方程式は 01 ソ-3=- 2- ゆえに ーk+7=0 よって これを③に代入して整理すると k=7 15x-19y+27=0ha すなわち Lecture 2直線の交点を通る直線 交わる2直線 ax+by+c=0, dx+ey+f=0 に対し k(ax+by+c)+(dx+ey+f)=0 (kは定数) は,2直線の交点を通る直線を表す(直線 ax+hu+c=0 は表すことかい。 例えば、上の解答の③は,kの値を変化さキろと 直独①. ②の交点 線を表す。 なお,上の解答の最大の竹 いうと

回答募集中 回答数: 0
2/2